No Arabic abstract
We pursue a program to confront observations with arbitrarily inhomogeneous cosmologies beyond the FLRW metric. The main idea is to test the Copernican principle rather than assuming it a priori. We consider the $Lambda$CDM model endowed with a spherical $Lambda$LTB inhomogeneity around us, that is, we assume isotropy and test the hypothesis of homogeneity. We confront the $Lambda$LTB model with the latest available data from CMB, BAO, type Ia supernovae, local $H_0$, cosmic chronometers, Compton y-distortion and kinetic Sunyaev-Zeldovich effect. We find that these data can constrain tightly this extra inhomogeneity, almost to the cosmic variance level: on scales $gtrsim 100$ Mpc structures can have a small non-Copernican effective contrast of just $delta_L sim 0.01$. Furthermore, the constraints on the standard $Lambda$CDM parameters are not weakened after marginalizing over the parameters that model the local structure, to which we assign ignorance priors. In other words, dropping the FLRW metric assumption does not imply worse constraints on the cosmological parameters. This positive result confirms that the present and future data can be meaningfully analyzed within the framework of inhomogeneous cosmology.
The tensor-vector-scalar (TeVeS) model is considered a viable theory of gravity. It produces the Milgroms modified Newtonian dynamics in the nonrelativistic weak field limit and is free from ghosts. This model has been tested against various cosmological observations. Here we investigate whether new observations such as the galaxy velocity power spectrum measured by 6dF and the kinetic Sunyaev Zeldovich effect power spectrum measured by ACT/SPT can put further constraints on the TeVeS model. Furthermore, we perform the test of TeVeS cosmology with a sterile neutrino by confronting to Planck data, and find that it is ruled out by cosmic microwave background measurements from the Planck mission.
This paper proposes a systematic study of cosmological signatures of modifications of gravity via the presence of a scalar field with a multiplicative coupling to the electromagnetic Lagrangian. We show that, in this framework, variations of the fine structure constant, violations of the distance duality relation, evolution of the cosmic microwave background (CMB) temperature and CMB distortions are intimately and unequivocally linked. This enables one to put very stringent constraints on possible violations of the distance duality relation, on the evolution of the CMB temperature and on admissible CMB distortions using current constraints on the fine structure constant. Alternatively, this offers interesting possibilities to test a wide range of theories of gravity by analysing several datasets concurrently. We discuss results obtained using current data as well as some forecasts for future data sets such as those coming from EUCLID or the SKA.
Although cosmic microwave background (CMB) is the most powerful cosmological probe of neutrino masses, it is in trouble with local direct measurements of $H_0$, which is called the $H_0$ tension. Since neutrino masses are correlated with $H_0$ in CMB, one can expect the cosmological bound on neutrino masses would be much affected by the $H_0$ tension. We investigate what impact this tension brings to cosmological bound on neutrino masses by assuming a model with modified recombination which has been shown to resolve the tension. We argue that constraints on neutrino masses become significantly weaker in models where the $H_0$ tension can be resolved.
The growth rate of matter density perturbations has been measured from redshift-space distortion (RSD) in the galaxy power spectrum. We constrain the model parameter space for representative modified gravity models to explain the dark energy problem, by using the recent data of f_m(z)sigma_8(z) at the redshifts z = 0.06--0.8 measured by WiggleZ, SDSS LRG, BOSS, and 6dFGRS. We first test the Hu-Sawickis f(R) dark energy model, and find that only the parameter region close to the standard Lambda Cold Dark Matter (Lambda-CDM) model is allowed (lambda > 12 and 5 for n = 1.5 and 2, respectively, at 95% CL). We then investigate the covariant Galileon model and show that the parameter space consistent with the background expansion history is excluded by the RSD data at more than 10 sigma because of the too large growth rate predicted by the theory. Finally, we consider the extended Galileon scenario, and we find that, in contrast to the covariant Galileon, there is a model parameter space for a tracker solution that is consistent with the RSD data within a 2 sigma level.
We investigate cosmological consequences of an inflationary model which incorporates a generic seesaw extension (types I and II) of the Standard Model of Particle Physics. A non-minimal coupling between the inflaton field and the Ricci scalar is considered as well as radiative corrections at one loop order. This connection between the inflationary dynamics with neutrino physics results in a predictive model whose observational viability is investigated in light of the current cosmic microwave background data, baryon acoustic oscillation observations and type Ia supernovae measurements. Our results show that the non-minimal coupled seesaw potential provides a good description of the observational data when radiative corrections are positive. Such result favours the type II seesaw mechanism over type I and may be an indication for physics beyond the Standard Model.