Do you want to publish a course? Click here

Analysis of relationships between spectral potential of transfer operators, $t$-entropy, entropy and topological pressure

253   0   0.0 ( 0 )
 Added by Victor Bakhtin
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The paper is devoted to the analysis of relationships between principal objects of the spectral theory of dynamical systems (transfer and weighted shift operators) and basic characteristics of information theory and thermodynamic formalism (entropy and topological pressure). We present explicit formulae linking these objects with $t$-entropy and spectral potential. Herewith we uncover the role of inverse rami-rate, forward entropy along with essential set and the property of non-contractibility of a dynamical system.



rate research

Read More

This manuscript introduces a space of functions, termed occupation kernel Hilbert space (OKHS), that operate on collections of signals rather than real or complex functions. To support this new definition, an explicit class of OKHSs is given through the consideration of a reproducing kernel Hilbert space (RKHS). This space enables the definition of nonlocal operators, such as fractional order Liouville operators, as well as spectral decomposition methods for corresponding fractional order dynamical systems. In this manuscript, a fractional order DMD routine is presented, and the details of the finite rank representations are given. Significantly, despite the added theoretical content through the OKHS formulation, the resultant computations only differ slightly from that of occupation kernel DMD methods for integer order systems posed over RKHSs.
Synchronized movement of (both unicellular and multicellular) systems can be observed almost everywhere. Understanding of how organisms are regulated to synchronized behavior is one of the challenging issues in the field of collective motion. It is hypothesized that one or a few agents in a group regulate(s) the dynamics of the whole collective, known as leader(s). The identification of the leader (influential) agent(s) is very crucial. This article reviews different mathematical models that represent different types of leadership. We focus on the improvement of the leader-follower classification problem. It was found using a simulation model that the use of interaction domain information significantly improves the leader-follower classification ability using both linear schemes and information-theoretic schemes for quantifying influence. This article also reviews different schemes that can be used to identify the interaction domain using the motion data of agents.
82 - Yu-Wei Fan 2018
We compute the categorical entropy of autoequivalences given by P-twists, and show that these autoequivalences satisfy a Gromov-Yomdin type conjecture.
144 - Yu-Wei Fan , Lie Fu , Genki Ouchi 2020
For classical dynamical systems, the polynomial entropy serves as a refined invariant of the topological entropy. In the setting of categorical dynamical systems, that is, triangulated categories endowed with an endofunctor, we develop the theory of categorical polynomial entropy, refining the categorical entropy defined by Dimitrov-Haiden-Katzarkov-Kontsevich. We justify this notion by showing that for an automorphism of a smooth projective variety, the categorical polynomial entropy of the pullback functor on the derived category coincides with the polynomial growth rate of the induced action on cohomology. We also establish in general a Yomdin-type lower bound for the categorical polynomial entropy of an endofunctor in terms of the induced endomorphism on the numerical Grothendieck group of the category. As examples, we compute the categorical polynomial entropy for some standard functors like shifts, Serre functors, tensoring line bundles, automorphisms, spherical twists, P-twists, and so on, illustrating clearly how categorical polynomial entropy refines the study of categorical entropy and enables us to study the phenomenon of categorical trichotomy. A parallel theory of polynomial mass growth rate is developed in the presence of Bridgeland stability conditions.
First principle calculation of the QCD spectral functions (SPFs) based on the lattice QCD simulations is reviewed. Special emphasis is placed on the Bayesian inference theory and the Maximum Entropy Method (MEM), which is a useful tool to extract SPFs from the imaginary-time correlation functions numerically obtained by the Monte Carlo method. Three important aspects of MEM are (i) it does not require a priori assumptions or parametrizations of SPFs, (ii) for given data, a unique solution is obtained if it exists, and (iii) the statistical significance of the solution can be quantitatively analyzed. The ability of MEM is explicitly demonstrated by using mock data as well as lattice QCD data. When applied to lattice data, MEM correctly reproduces the low-energy resonances and shows the existence of high-energy continuum in hadronic correlation functions. This opens up various possibilities for studying hadronic properties in QCD beyond the conventional way of analyzing the lattice data. Future problems to be studied by MEM in lattice QCD are also summarized.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا