Do you want to publish a course? Click here

Ionization potentials and electron affinity of oganesson

66   0   0.0 ( 0 )
 Added by Yangyang Guo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present high accuracy relativistic coupled cluster calculations of the first and second ionisation potentials and the electron affinity of the heaviest element in the Periodic Table, Og. The results were extrapolated to the basis set limit and augmented with the higher order excitations (up to perturbative quadruples), the Breit contribution, and the QED self energy and vacuum polarisation corrections. We have performed an extensive investigation of the effect of the various computational parameters on the calculated properties, which allowed us to assign realistic uncertainties on our predictions. Similar study on the lighter homologue of Og, Rn, yields excellent agreement with experiment for the first ionisation potential and a reliable prediction for the second ionisation potential.

rate research

Read More

The electron affinity (EA) of superheavy element Og is calculated by the use of the relativistic Fock-space coupled cluster (FSCC) and configuration interaction methods. The FSCC cluster operator expansion included single, double, and triple excitations treated in a non-perturbative manner. The Gaunt and retardation electron-electron interactions are taken into account. Both methods yield the results that are in agreement with each other. The quantum electrodynamics correction to EA is evaluated using the model Lamb-shift operator approach. The electron affinity of Og is obtained to be 0.076(4) eV.
One of the most important properties influencing the chemical behavior of an element is the energy released with the addition of an extra electron to the neutral atom, referred to as the electron affinity (EA). Among the remaining elements with unknown EA is astatine, the purely radioactive element 85. Astatine is the heaviest naturally occurring halogen and its isotope $^{211}$At is remarkably well suited for targeted radionuclide therapy of cancer. With the At$^-$ anion being involved in many aspects of current astatine labelling protocols, the knowledge of the electron affinity of this element is of prime importance. In addition, the EA can be used to deduce other concepts such as the electronegativity, thereby further improving the understanding of astatines chemistry. Here, we report the first measurement of the EA for astatine to be 2.41578(7)eV. This result is compared to state-of-the-art relativistic quantum mechanical calculations, which require incorporation of the electron-electron correlation effects on the highest possible level. The developed technique of laser-photodetachment spectroscopy of radioisotopes opens the path for future EA measurements of other radioelements such as polonium, and eventually super-heavy elements, which are produced at a one-atom-at-a-time rate.
The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium over an energy range from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transitions from the ground state, but to a lesser extent the strong transitions between excited states. Cross sections are presented for selected transitions between low-lying physical bound states of beryllium, as well as for elastic scattering, momentum transfer, and ionization. The present cross sections for transitions from the ground state from the two methods are in excellent agreement with each other, and also with other available results based on nonperturbative convergent pseudo-state and time-dependent close-coupling models. The elastic cross section at low energies is dominated by a prominent shape resonance. The ionization from the $(2s2p)^3P$ and $(2s2p)^1P$ states strongly depends on the respective term. The current predictions represent an extensive set of electron scattering data for neutral beryllium, which should be sufficient for most modeling applications.
Electron-impact direct double ionization (DDI) process is studied as a sequence of two and three step processes. Contribution from ionization-ionization, ionization-excitation-ionization, and excitation-ionization-ionization processes is taken into account. The present results help to resolve the long-standing discrepancies; in particular, a good agreement with experimental measurements is obtained for double ionization cross-sections of $O^{1+}$, $O^{2+}$, $O^{3+}$, $C^{1+}$, and $Ar^{2+}$ ions. We show that distribution of the energy of scattered and ejected electrons, which participate in the next step of ionization, strongly affects DDI cross-sections.
Electron-impact ionization of lithium is studied using the convergent close-coupling (CCC) method at 25.4 and 54.4 eV. Particular attention is paid to the spin-dependence of the ionization cross sections. Convergence is found to be more rapid for the spin asymmetries, which are in good agreement with experiment, than for the underlying cross sections. Comparison with the recent measured and DS3C-calculated data of Streun et al (1999) is most intriguing. Excellent agreement is found with the measured and calculated spin asymmetries, yet the discrepancy between the CCC and DS3C cross sections is very large.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا