No Arabic abstract
Electron-impact ionization of lithium is studied using the convergent close-coupling (CCC) method at 25.4 and 54.4 eV. Particular attention is paid to the spin-dependence of the ionization cross sections. Convergence is found to be more rapid for the spin asymmetries, which are in good agreement with experiment, than for the underlying cross sections. Comparison with the recent measured and DS3C-calculated data of Streun et al (1999) is most intriguing. Excellent agreement is found with the measured and calculated spin asymmetries, yet the discrepancy between the CCC and DS3C cross sections is very large.
Electron-impact direct double ionization (DDI) process is studied as a sequence of two and three step processes. Contribution from ionization-ionization, ionization-excitation-ionization, and excitation-ionization-ionization processes is taken into account. The present results help to resolve the long-standing discrepancies; in particular, a good agreement with experimental measurements is obtained for double ionization cross-sections of $O^{1+}$, $O^{2+}$, $O^{3+}$, $C^{1+}$, and $Ar^{2+}$ ions. We show that distribution of the energy of scattered and ejected electrons, which participate in the next step of ionization, strongly affects DDI cross-sections.
We study double ionization of Mg by electron impact through the vantage point of classical mechanics. We consider all electron-electron correlations in a Coulomb four-body problem, where three electrons belong to the atom and the fourth electron causes the impact ionization. From our model we compute the double-ionization probability of Mg for impact energies from 15, to 125 eV. Double ionization occurs through eight double-ionization mechanisms, which we classify into four categories: inner shell capture, direct, delay and ionized inner shell mechanisms. We show that delay and ionized inner shell mechanisms require electron-electron correlations among the four electrons, and are responsible for the second increase in the double-ionization probability. Furthermore, we show that our theoretical prediction about the relative prominence of certain double ionization mechanisms is in agreement with experimental results on the relative prominence of non-first- over first-order mechanisms.
The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium over an energy range from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transitions from the ground state, but to a lesser extent the strong transitions between excited states. Cross sections are presented for selected transitions between low-lying physical bound states of beryllium, as well as for elastic scattering, momentum transfer, and ionization. The present cross sections for transitions from the ground state from the two methods are in excellent agreement with each other, and also with other available results based on nonperturbative convergent pseudo-state and time-dependent close-coupling models. The elastic cross section at low energies is dominated by a prominent shape resonance. The ionization from the $(2s2p)^3P$ and $(2s2p)^1P$ states strongly depends on the respective term. The current predictions represent an extensive set of electron scattering data for neutral beryllium, which should be sufficient for most modeling applications.
The contribution to electron-impact ionization cross sections from excitations to high-nl shells and a consequent autoionization is investigated. We perform relativistic subconfiguration-average and detailed level-to-level calculations for this process. Ionization cross sections for the W27+ ion are presented to illustrate the large influence of the high shells (n >= 9) and orbitals (l >= 4) in the excitation-autoionization process. The obtained results show that the excitations to the high shells (n >= 9) increase cross sections of the indirect ionization process by a factor of 2 compared to the excitations to the lower shells (n <= 8). The excitations to the shells with orbital quantum number l = 4 give the largest contribution comparedwith the other orbital quantum numbers l. Radiative damping reduces the cross sections of the indirect process approximately twofold in the case of the level-to-level calculations. Determined data show that the excitation-autoionization process contributes approximately 40% to the total ionization cross sections.
The electron impact ionization of atomic hydrogen is calculated for incident elrctron energy 76.46 eV. The Hartree-Fock approximation is used to calculate the initial state which includes both bound and continum wave functions. The final state continuum electron wave functions are obtained in the potential of hydrogen ion. The interaction between the two final state continuum electrons is approximated with the screening potential determined variationally.