Do you want to publish a course? Click here

Inverse magnetic hysteresis of the Josephson supercurrent: study of the magnetic properties of thin niobium/permalloy (Fe_{20}Ni_{80}) interfaces

83   0   0.0 ( 0 )
 Added by Roberta Satariano
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a picture for the magnetic properties of superconductor/ferromagnet (S/F) heterostructures based on Nb and permalloy (Py: Fe_{20}Ni_{80}). By measuring the magnetic moment as a function of the temperature in S/F/S trilayers for different thicknesses of the middle F layer, we give evidence of the presence of a magnetic stray field of the F layer. For values of F-layer thickness below a threshold, we establish a correlation between the magnetic measurements of the S/F/S trilayers and the anomalous magnetic dependence of the critical current in S/insulator/thin superconducting film/F/S (SIsFS) Josephson junctions (JJs). These complementary investigations provide a self-consistent method to fully characterize S/F heterostructures and possibly demonstrate effects arising from the mutual interactions between ferromagnetism and superconductivity. A shift in the Fraunhofer critical current oscillations has been observed in the opposite direction to the one commonly observed in JJs with F barriers, as it has been recently predicted by inverse and electromagnetic proximity theories. This inverse memory effect is relevant for the design of these heterostructures as memory cells and spintronic devices.



rate research

Read More

Non-collinear antiferromagnets can have additional spin Hall effects due to the net chirality of their magnetic spin structure, which provides for more complex spin-transport phenomena compared to ordinary non-magnetic materials. Here we investigated how ferromagnetic resonance of permalloy ($Ni_{80}Fe_{20}$) is modulated by spin Hall effects in adjacent epitaxial $IrMn_{3}$ films. We observe a large dc modulation of the ferromagnetic resonance linewidth for currents applied along the [001] $IrMn_{3}$ direction. This very strong angular dependence of spin-orbit torques from dc currents through the bilayers can be explained by the magnetic spin Hall effect where $IrMn_{3}$ provides novel pathways for modulating magnetization dynamics electrically.
76 - D. Janjusevic 2006
The microwave response of high quality niobium films in a perpendicular static magnetic field has been investigated. The complex frequency shift was measured up to the upper critical fields. The data have been analyzed by the effective conductivity model for the type-II superconductors in the mixed state. This model is found to yield consistent results for the coherence lengths in high-kappa superconducting samples, and can be used with HTSC even at temperatures much below T_c. It is shown that for samples with high values of depinning frequency, one should measure both components of the complex frequency shift in order to determine the flow resistivity. The thick Nb film (160 nm) has low resistivity at 10 K, comparable to the best single crystals, and low kappa value. In contrast, the thinnest (10 nm) film has kappa ~ 9.5 and exhibits a high depinning frequency (~20 GHz). The upper critical field determined from microwave measurements is related to the radius of nonoverlaping vortices, and appears to be larger than the one determined by the transition to the normal state.
Single crystals of Ba(Fe_(1-x)Mn_x)_2As_2, 0<x<0.148, have been grown and characterized by structural, magnetic, electrical transport and thermopower measurements. Although growths of single crystals of Ba(Fe_(1-x)Mn_x)_2As_2 for the full 0<=x<=1 range were made, we find evidence for phase separation (associated with some form of immiscibility) starting for x>0.1-0.2. Our measurements show that whereas the structural/magnetic phase transition found in pure BaFe_2As_2 at 134 K is initially suppressed by Mn substitution, superconductivity is not observed at any substitution level. Although the effect of hydrostatic pressure up to 20 kbar in the parent BaFe_2As_2 compound is to suppress the structural/magnetic transition at the approximate rate of 0.9 K/kbar, the effects of pressure and Mn substitution in the x=0.102 compound are not cumulative. Phase diagrams of transition temperature versus substitution concentration, x, based on electrical transport, magnetization and thermopower measurements have been constructed and compared to those of the Ba(Fe_(1-x)TM_x)_2As_2 (TM=Co and Cr) series.
We present measurements of Josephson junctions containing three magnetic layers with noncolinear magnetizations. The junctions are of the form $S/F^{prime}/N/F/N/F^{prime prime}/S$, where $S$ is superconducting Nb, $F^prime$ is either a thin Ni or Permalloy layer with in-plane magnetization, $N$ is the normal metal Cu, $F$ is a synthetic antiferromagnet (SAF) with magnetization perpendicular to the plane, composed of Pd/Co multilayers on either side of a thin Ru spacer, and $F^{prime prime}$ is a thin Ni layer with in-plane magnetization. The supercurrent in these junctions decays more slowly as a function of the $F$-layer thickness than for similar spin-singlet junctions not containing the $F^prime$ and $F^{prime prime}$ layers. The slower decay is the prime signature that the supercurrent in the central part of these junctions is carried by spin-triplet pairs. The junctions containing $F^{prime}=$ Permalloy are suitable for future experiments where either the amplitude of the critical current or the ground-state phase difference across the junction is controlled by changing the relative orientations of the magnetizations of the $F^{prime}$ and $F^{prime prime}$ layers.
Superconducting thin-films are central to the operation of many kinds of quantum sensors and quantum computing devices: Kinetic Inductance Detectors (KIDs), Travelling-Wave Parametric Amplifiers (TWPAs), Qubits, and Spin-based Quantum Memory elements. In all cases, the nonlinearity resulting from the supercurrent is a critical aspect of behaviour, either because it is central to the operation of the device (TWPA), or because it results in non-ideal second-order effects (KID). Here we present an analysis of supercurrent carrying superconducting thin-films that is based on the generalized Usadel equations. Our analysis framework is suitable for both homogeneous and multilayer thin-films, and can be used to calculate the resulting density of states, superconducting transition temperature, superconducting critical current, complex conductivities, complex surface impedances, transmission line propagation constants, and nonlinear kinetic inductances in the presence of supercurrent. Our analysis gives the scale of kinetic inductance nonlinearity (I*) for a given material combination and geometry, and is important in optimizing the design of detectors and amplifiers in terms of materials, geometries, and dimensions. To investigate the validity of our analysis across a wide range of supercurrent, we have measured the transition temperatures of superconducting thin-films as a function of DC supercurrent. These measurements show good agreement with our theoretical predictions in the experimentally relevant range of current values.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا