Do you want to publish a course? Click here

A study of super-luminous stars with the Fermi Large Area Telescope

60   0   0.0 ( 0 )
 Added by Raniere De Menezes
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The $gamma$-ray emission from stars is induced by the interaction of cosmic rays with stellar atmospheres and photon fields. This emission is expected to come in two components: a stellar disk emission, where $gamma$-rays are mainly produced in atmospheric showers generated by hadronic cosmic rays, and an extended halo emission, where the high density of soft photons in the surroundings of stars create a suitable environment for $gamma$-ray production via inverse Compton (IC) scattering by cosmic-ray electrons. Besides the Sun, no other disk or halo from single stars has ever been detected in $gamma$-rays. However, by assuming a cosmic-ray spectrum similar to that observed on Earth, the predicted $gamma$-ray emission of super-luminous stars, like e.g. Betelgeuse and Rigel, could be high enough to be detected by the Fermi Large Area Telescope (LAT) after its first decade of operations. In this work, we use 12 years of Fermi-LAT observations along with IC models to study 9 super-luminous nearby stars, both individually and via stacking analysis. Our results show no significant $gamma$-ray emission, but allow us to restrict the stellar $gamma$-ray fluxes to be on average $<3.3 times 10^{-11}$ ph cm$^{-2}$ s$^{-1}$ at a 3$sigma$ confidence level, which translates to an average local density of electrons in the surroundings of our targets to be less than twice of that observed for the Solar System.



rate research

Read More

The LAT instrument on the Fermi mission will reveal the rich spectral and temporal gamma-ray burst phenomena in the > 100 MeV band. The synergy with Fermis GBM detectors will link these observations to those in the well explored 10-1000 keV range; the addition of the > 100 MeV band observations will resolve theoretical uncertainties about burst emission in both the prompt and afterglow phases. Trigger algorithms will be applied to the LAT data both onboard the spacecraft and on the ground. The sensitivity of these triggers will differ because of the available computing resources onboard and on the ground. Here we present the LATs burst detection methodologies and the instruments GRB capabilities.
We present the fourth Fermi Large Area Telescope catalog (4FGL) of gamma-ray sources. Based on the first eight years of science data from the Fermi Gamma-ray Space Telescope mission in the energy range from 50 MeV to 1 TeV, it is the deepest yet in this energy range. Relative to the 3FGL catalog, the 4FGL catalog has twice as much exposure as well as a number of analysis improvements, including an updated model for the Galactic diffuse gamma-ray emission, and two sets of light curves (1-year and 2-month intervals). The 4FGL catalog includes 5064 sources above 4 sigma significance, for which we provide localization and spectral properties. Seventy-five sources are modeled explicitly as spatially extended, and overall 358 sources are considered as identified based on angular extent, periodicity or correlated variability observed at other wavelengths. For 1336 sources we have not found plausible counterparts at other wavelengths. More than 3130 of the identified or associated sources are active galaxies of the blazar class, and 239 are pulsars.
In eight years of operation, the Fermi Large Area Telescope (LAT) has detected a large sample of cosmic-ray protons. The LATs wide field of view and full-sky coverage make it an excellent instrument for studying anisotropy in the arrival directions of protons at all angular scales. These capabilities enable the LAT to make a full-sky 2D measurement of cosmic-ray proton anisotropy complementary to many recent TeV measurements, which are only sensitive to the right ascension component of the anisotropy. Any detected anisotropy probes the structure of the local interstellar magnetic field or could indicate the presence of a nearby source. We present the first results from the Fermi-LAT Collaboration on the full-sky angular power spectrum of protons from approximately 100 GeV - 10 TeV.
We present the results of a search for high-energy gamma-ray emission from a large sample of galaxy clusters sharing the properties of three existing Fermi-LAT detections (in Perseus, Virgo and Abell 3392), namely a powerful radio source within their brightest cluster galaxy (BCG). From a parent, X-ray flux-limited sample of clusters, we select 114 systems with a core-dominated BCG radio flux above 50 or 75 mJy, stacking data from the first 45 months of the Fermi mission, to determine statistical limits on the gamma-ray fluxes of the ensemble of candidate sources. For a >300 MeV selection, the distribution of detection significance across the sample is consistent with that across control samples for significances <3 sigma, but has a tail extending to higher values, including three >4 sigma signals which are not associated with previously identified gamma-ray emission. Modelling of the data in these fields results in the detection of four non-2FGL Fermi sources, though none appear to be unambiguously associated with the BCG candidate. A search at energies >3 GeV hints at emission from the BCG in A 2055, which hosts a BL Lac object. There is no evidence for a signal in the stacked data, and the upper limit derived on the gamma-ray flux of an average radio-bright BCG in the sample is an order-of-magnitude more constraining than that calculated for individual objects. F(1 GeV)/F(1.4 GHz) <15, compared with ~120 for NGC 1275 in Perseus, which might indicate a special case for those objects detected at high energies; that beamed emission from member galaxies comprise the dominant bright gamma-ray sources in clusters.
138 - C. Y. Hui 2011
We present a detailed analysis of the gamma-ray emission from HESS J1745-303 with the data obtained by the Fermi Gamma-ray Space Telescope in the first ~29 months observation.The source can be clearly detected at the level of ~18-sigma and ~6-sigma in 1-20 GeV and 10-20 GeV respectively. Different from the results obtained by the Compton Gamma-ray Observatory, we do not find any evidence of variability. Most of emission in 10-20 GeV is found to coincide with the region C of HESS J1745-303. A simple power-law is sufficient to describe the GeV spectrum with a photon index of ~2.6. The power-law spectrum inferred in the GeV regime can be connected to that of a particular spatial component of HESS J1745-303 in 1-10 TeV without any spectral break. These properties impose independent constraints for understanding the nature of this dark particle accelerator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا