Do you want to publish a course? Click here

Blind source separation for non-stationary random fields

62   0   0.0 ( 0 )
 Added by Christoph Muehlmann
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Regional data analysis is concerned with the analysis and modeling of measurements that are spatially separated by specifically accounting for typical features of such data. Namely, measurements in close proximity tend to be more similar than the ones further separated. This might hold also true for cross-dependencies when multivariate spatial data is considered. Often, scientists are interested in linear transformations of such data which are easy to interpret and might be used as dimension reduction. Recently, for that purpose spatial blind source separation (SBSS) was introduced which assumes that the observed data are formed by a linear mixture of uncorrelated, weakly stationary random fields. However, in practical applications, it is well-known that when the spatial domain increases in size the weak stationarity assumptions can be violated in the sense that the second order dependency is varying over the domain which leads to non-stationary analysis. In our work we extend the SBSS model to adjust for these stationarity violations, present three novel estimators and establish the identifiability and affine equivariance property of the unmixing matrix functionals defining these estimators. In an extensive simulation study, we investigate the performance of our estimators and also show their use in the analysis of a geochemical dataset which is derived from the GEMAS geochemical mapping project.



rate research

Read More

Multivariate measurements taken at different spatial locations occur frequently in practice. Proper analysis of such data needs to consider not only dependencies on-sight but also dependencies in and in-between variables as a function of spatial separation. Spatial Blind Source Separation (SBSS) is a recently developed unsupervised statistical tool that deals with such data by assuming that the observable data is formed by a linear latent variable model. In SBSS the latent variable is assumed to be constituted by weakly stationary random fields which are uncorrelated. Such a model is appealing as further analysis can be carried out on the marginal distributions of the latent variables, interpretations are straightforward as the model is assumed to be linear, and not all components of the latent field might be of interest which acts as a form of dimension reduction. The weakly stationarity assumption of SBSS implies that the mean of the data is constant for all sample locations, which might be too restricting in practical applications. Therefore, an adaptation of SBSS that uses scatter matrices based on differences was recently suggested in the literature. In our contribution we formalize these ideas, suggest an adapted SBSS method and show its usefulness on synthetic and real data.
Recently a blind source separation model was suggested for spatial data together with an estimator based on the simultaneous diagonalisation of two scatter matrices. The asymptotic properties of this estimator are derived here and a new estimator, based on the joint diagonalisation of more than two scatter matrices, is proposed. The asymptotic properties and merits of the novel estimator are verified in simulation studies. A real data example illustrates the method.
Two-sample and independence tests with the kernel-based MMD and HSIC have shown remarkable results on i.i.d. data and stationary random processes. However, these statistics are not directly applicable to non-stationary random processes, a prevalent form of data in many scientific disciplines. In this work, we extend the application of MMD and HSIC to non-stationary settings by assuming access to independent realisations of the underlying random process. These realisations - in the form of non-stationary time-series measured on the same temporal grid - can then be viewed as i.i.d. samples from a multivariate probability distribution, to which MMD and HSIC can be applied. We further show how to choose suitable kernels over these high-dimensional spaces by maximising the estimated test power with respect to the kernel hyper-parameters. In experiments on synthetic data, we demonstrate superior performance of our proposed approaches in terms of test power when compared to current state-of-the-art functional or multivariate two-sample and independence tests. Finally, we employ our methods on a real socio-economic dataset as an example application.
Approximate joint diagonalization of a set of matrices provides a powerful framework for numerous statistical signal processing applications. For non-unitary joint diagonalization (NUJD) based on the least-squares (LS) criterion, outliers, also referred to as anomaly or discordant observations, have a negative influence on the performance, since squaring the residuals magnifies the effects of them. To solve this problem, we propose a novel cost function that incorporates the soft decision-directed scheme into the least-squares algorithm and develops an efficient algorithm. The influence of the outliers is mitigated by applying decision-directed weights which are associated with the residual error at each iterative step. Specifically, the mixing matrix is estimated by a modified stationary point method, in which the updating direction is determined based on the linear approximation to the gradient function. Simulation results demonstrate that the proposed algorithm outperforms conventional non-unitary diagonalization algorithms in terms of both convergence performance and robustness to outliers.
Multichannel blind audio source separation aims to recover the latent sources from their multichannel mixtures without supervised information. One state-of-the-art blind audio source separation method, named independent low-rank matrix analysis (ILRMA), unifies independent vector analysis (IVA) and nonnegative matrix factorization (NMF). However, the spectra matrix produced from NMF may not find a compact spectral basis. It may not guarantee the identifiability of each source as well. To address this problem, here we propose to enhance the identifiability of the source model by a minimum-volume prior distribution. We further regularize a multichannel NMF (MNMF) and ILRMA respectively with the minimum-volume regularizer. The proposed methods maximize the posterior distribution of the separated sources, which ensures the stability of the convergence. Experimental results demonstrate the effectiveness of the proposed methods compared with auxiliary independent vector analysis, MNMF, ILRMA and its extensions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا