Do you want to publish a course? Click here

Kernel Two-Sample and Independence Tests for Non-Stationary Random Processes

181   0   0.0 ( 0 )
 Added by Felix Laumann
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Two-sample and independence tests with the kernel-based MMD and HSIC have shown remarkable results on i.i.d. data and stationary random processes. However, these statistics are not directly applicable to non-stationary random processes, a prevalent form of data in many scientific disciplines. In this work, we extend the application of MMD and HSIC to non-stationary settings by assuming access to independent realisations of the underlying random process. These realisations - in the form of non-stationary time-series measured on the same temporal grid - can then be viewed as i.i.d. samples from a multivariate probability distribution, to which MMD and HSIC can be applied. We further show how to choose suitable kernels over these high-dimensional spaces by maximising the estimated test power with respect to the kernel hyper-parameters. In experiments on synthetic data, we demonstrate superior performance of our proposed approaches in terms of test power when compared to current state-of-the-art functional or multivariate two-sample and independence tests. Finally, we employ our methods on a real socio-economic dataset as an example application.



rate research

Read More

A popular approach for testing if two univariate random variables are statistically independent consists of partitioning the sample space into bins, and evaluating a test statistic on the binned data. The partition size matters, and the optimal partition size is data dependent. While for detecting simple relationships coarse partitions may be best, for detecting complex relationships a great gain in power can be achieved by considering finer partitions. We suggest novel consistent distribution-free tests that are based on summation or maximization aggregation of scores over all partitions of a fixed size. We show that our test statistics based on summation can serve as good estimators of the mutual information. Moreover, we suggest regularized tests that aggregate over all partition sizes, and prove those are consistent too. We provide polynomial-time algorithms, which are critical for computing the suggested test statistics efficiently. We show that the power of the regularized tests is excellent compared to existing tests, and almost as powerful as the tests based on the optimal (yet unknown in practice) partition size, in simulations as well as on a real data example.
175 - Luke Bornn , Gavin Shaddick , 2010
In this paper, we propose a novel approach to modeling nonstationary spatial fields. The proposed method works by expanding the geographic plane over which these processes evolve into higher dimensional spaces, transforming and clarifying complex patterns in the physical plane. By combining aspects of multi-dimensional scaling, group lasso, and latent variables models, a dimensionally sparse projection is found in which the originally nonstationary field exhibits stationarity. Following a comparison with existing methods in a simulated environment, dimension expansion is studied on a classic test-bed data set historically used to study nonstationary models. Following this, we explore the use of dimension expansion in modeling air pollution in the United Kingdom, a process known to be strongly influenced by rural/urban effects, amongst others, which gives rise to a nonstationary field.
We investigate the problem of testing whether $d$ random variables, which may or may not be continuous, are jointly (or mutually) independent. Our method builds on ideas of the two variable Hilbert-Schmidt independence criterion (HSIC) but allows for an arbitrary number of variables. We embed the $d$-dimensional joint distribution and the product of the marginals into a reproducing kernel Hilbert space and define the $d$-variable Hilbert-Schmidt independence criterion (dHSIC) as the squared distance between the embeddings. In the population case, the value of dHSIC is zero if and only if the $d$ variables are jointly independent, as long as the kernel is characteristic. Based on an empirical estimate of dHSIC, we define three different non-parametric hypothesis tests: a permutation test, a bootstrap test and a test based on a Gamma approximation. We prove that the permutation test achieves the significance level and that the bootstrap test achieves pointwise asymptotic significance level as well as pointwise asymptotic consistency (i.e., it is able to detect any type of fixed dependence in the large sample limit). The Gamma approximation does not come with these guarantees; however, it is computationally very fast and for small $d$, it performs well in practice. Finally, we apply the test to a problem in causal discovery.
Gaussian process regression is a widely-applied method for function approximation and uncertainty quantification. The technique has gained popularity recently in the machine learning community due to its robustness and interpretability. The mathematical methods we discuss in this paper are an extension of the Gaussian-process framework. We are proposing advanced kernel designs that only allow for functions with certain desirable characteristics to be elements of the reproducing kernel Hilbert space (RKHS) that underlies all kernel methods and serves as the sample space for Gaussian process regression. These desirable characteristics reflect the underlying physics; two obvious examples are symmetry and periodicity constraints. In addition, non-stationary kernel designs can be defined in the same framework to yield flexible multi-task Gaussian processes. We will show the impact of advanced kernel designs on Gaussian processes using several synthetic and two scientific data sets. The results show that including domain knowledge, communicated through advanced kernel designs, has a significant impact on the accuracy and relevance of the function approximation.
128 - Xiuyuan Cheng , Yao Xie 2021
We present a study of kernel MMD two-sample test statistics in the manifold setting, assuming the high-dimensional observations are close to a low-dimensional manifold. We characterize the property of the test (level and power) in relation to the kernel bandwidth, the number of samples, and the intrinsic dimensionality of the manifold. Specifically, we show that when data densities are supported on a $d$-dimensional sub-manifold $mathcal{M}$ embedded in an $m$-dimensional space, the kernel MMD two-sample test for data sampled from a pair of distributions $(p, q)$ that are Holder with order $beta$ is consistent and powerful when the number of samples $n$ is greater than $delta_2(p,q)^{-2-d/beta}$ up to certain constant, where $delta_2$ is the squared $ell_2$-divergence between two distributions on manifold. Moreover, to achieve testing consistency under this scaling of $n$, our theory suggests that the kernel bandwidth $gamma$ scales with $n^{-1/(d+2beta)}$. These results indicate that the kernel MMD two-sample test does not have a curse-of-dimensionality when the data lie on the low-dimensional manifold. We demonstrate the validity of our theory and the property of the MMD test for manifold data using several numerical experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا