No Arabic abstract
Gender diversity in the tech sector is - not yet? - sufficient to create a balanced ratio of men and women. For many women, access to computer science is hampered by socialization-related, social, cultural and structural obstacles. The so-called implicit gender bias has a great influence in this respect. The lack of contact in areas of computer science makes it difficult to develop or expand potential interests. Female role models as well as more transparency of the job description should help women to promote their - possible - interest in the job description. However, gender diversity can also be promoted and fostered through adapted measures by leaders.
This paper presents a study that analyzes and gives quantitative means for measuring the gender gap in computing research publications. The data set built for this study is a geo-gender tagged authorship database named authorships that integrates data from computing journals indexed in the Journal Citation Reports (JCR) and the Microsoft Academic Graph (MAG). We propose a gender gap index to analyze female and male authors participation gap in JCR publications in Computer Science. Tagging publications with this index, we can classify papers according to the degree of participation of both women and men in different domains. Given that working contexts vary for female scientists depending on the country, our study groups analytics results according to the country of authors affiliation institutions. The paper details the method used to obtain, clean and validate the data, and then it states the hypothesis adopted for defining our index and classifications. Our study results have led to enlightening conclusions concerning various aspects of female authorships geographical distribution in computing JCR publications.
Despite their prevalence in society, social biases are difficult to identify, primarily because human judgements in this domain can be unreliable. We take an unsupervised approach to identifying gender bias against women at a comment level and present a model that can surface text likely to contain bias. Our main challenge is forcing the model to focus on signs of implicit bias, rather than other artifacts in the data. Thus, our methodology involves reducing the influence of confounds through propensity matching and adversarial learning. Our analysis shows how biased comments directed towards female politicians contain mixed criticisms, while comments directed towards other female public figures focus on appearance and sexualization. Ultimately, our work offers a way to capture subtle biases in various domains without relying on subjective human judgements.
The gender gap is a significant concern facing the software industry as the development becomes more geographically distributed. Widely shared reports indicate that gender differences may be specific to each region. However, how complete can these reports be with little to no research reflective of the Open Source Software (OSS) process and communities software is now commonly developed in? Our study presents a multi-region geographical analysis of gender inclusion on GitHub. This mixed-methods approach includes quantitatively investigating differences in gender inclusion in projects across geographic regions and investigate these trends over time using data from contributions to 21,456 project repositories. We also qualitatively understand the unique experiences of developers contributing to these projects through a survey that is strategically targeted to developers in various regions worldwide. Our findings indicate that gender diversity is low across all parts of the world, with no substantial difference across regions. However, there has been statistically significant improvement in diversity worldwide since 2014, with certain regions such as Africa improving at faster pace. We also find that most motivations and barriers to contributions (e.g., lack of resources to contribute and poor working environment) were shared across regions, however, some insightful differences, such as how to make projects more inclusive, did arise. From these findings, we derive and present implications for tools that can foster inclusion in open source software communities and empower contributions from everyone, everywhere.
In recent years, AI generated art has become very popular. From generating art works in the style of famous artists like Paul Cezanne and Claude Monet to simulating styles of art movements like Ukiyo-e, a variety of creative applications have been explored using AI. Looking from an art historical perspective, these applications raise some ethical questions. Can AI model artists styles without stereotyping them? Does AI do justice to the socio-cultural nuances of art movements? In this work, we take a first step towards analyzing these issues. Leveraging directed acyclic graphs to represent potential process of art creation, we propose a simple metric to quantify confounding bias due to the lack of modeling the influence of art movements in learning artists styles. As a case study, we consider the popular cycleGAN model and analyze confounding bias across various genres. The proposed metric is more effective than state-of-the-art outlier detection method in understanding the influence of art movements in artworks. We hope our work will elucidate important shortcomings of computationally modeling artists styles and trigger discussions related to accountability of AI generated art.
Gender bias, a systemic and unfair difference in how men and women are treated in a given domain, is widely studied across different academic fields. Yet, there are barely any studies of the phenomenon in the field of academic information systems (IS), which is surprising especially in the light of the proliferation of such studies in the Science, Technology, Mathematics and Technology (STEM) disciplines. To assess potential gender bias in the IS field, this paper outlines a study to estimate the impact of scholarly citations that female IS academics accumulate vis-`a-vis their male colleagues. Drawing on a scientometric study of the 7,260 papers published in the most prestigious IS journals (known as the AIS Basket of Eight), our analysis aims to unveil potential bias in the accumulation of citations between genders in the field. We use panel regression to estimate the gendered citations accumulation in the field. By doing so we propose to contribute knowledge on a core dimension of gender bias in academia, which is, so far, almost completely unexplored in the IS field.