Do you want to publish a course? Click here

Hawking-Ellis type of matter on Killing horizons in symmetric spacetimes

347   0   0.0 ( 0 )
 Added by Hideki Maeda
 Publication date 2021
  fields Physics
and research's language is English
 Authors Hideki Maeda




Ask ChatGPT about the research

Spherically, plane, or hyperbolically symmetric spacetimes with an additional hypersurface orthogonal Killing vector are often called static spacetimes even if they contain regions where the Killing vector is non-timelike. It seems to be widely believed that an energy-momentum tenor for a matter field compatible with these spacetimes in general relativity is of the Hawking-Ellis type I everywhere. We show in arbitrary $n(ge 3)$ dimensions that, contrary to popular belief, a matter field on a Killing horizon is not necessarily of type I but can be of type II. Such a type-II matter field on a Killing horizon is realized in the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole in the Einstein-Maxwell-dilaton system and may be interpreted as a mixture of a particular anisotropic fluid and a null dust fluid.



rate research

Read More

261 - Bethan Cropp , 2013
There are many logically and computationally distinct characterizations of the surface gravity of a horizon, just as there are many logically rather distinct notions of horizon. Fortunately, in standard general relativity, for stationary horizons, most of these characterizations are degenerate. However, in modified gravity, or in analogue spacetimes, horizons may be non-Killing or even non-null, and hence these degeneracies can be lifted. We present a brief overview of the key issues, specifically focusing on horizons in analogue spacetimes and universal horizons in modified gravity.
We apply the Dirac-Bergmann algorithm for the analysis of constraints to gauge theories defined on spherically symmetric black hole backgrounds. We find that the constraints for a given theory are modified on such spacetimes through the presence of additional contributions from the horizon. As a concrete example, we consider the Maxwell field on a black hole background, and determine the role of the horizon contributions on the dynamics of the theory.
We study various derivations of Hawking radiation in conformally rescaled metrics. We focus on two important properties, the location of the horizon under a conformal transformation and its associated temperature. We find that the production of Hawking radiation cannot be associated in all cases to the trapping horizon because its location is not invariant under a conformal transformation. We also find evidence that the temperature of the Hawking radiation should transform simply under a conformal transformation, being invariant for asymptotic observers in the limit that the conformal transformation factor is unity at their location.
In this paper we consider homothetic Killing vectors in the class of stationary axisymmetric vacuum (SAV) spacetimes, where the components of the vectors are functions of the time and radial coordinates. In this case the component of any homothetic Killing vector along the $z$ direction must be constant. Firstly, it is shown that either the component along the radial direction is constant or we have the proportionality $g_{phiphi}propto g_{rhorho}$, where $g_{phiphi}>0$. In both cases, complete analyses are carried out and the general forms of the homothetic Killing vectors are determined. The associated conformal factors are also obtained. The case of vanishing twist in the metric, i.e., $omega= 0$ is considered and the complete forms of the homothetic Killing vectors are determined, as well as the associated conformal factors.
We analyze the properties of the circular orbits for massive particles in the equatorial plane of symmetric rotating Ellis wormholes. In particular, we obtain the orbital frequencies and the radial and vertical epicyclic frequencies, and consider their lowest parametric, forced and Keplerian resonances. These show that quasi-periodic oscillations in accretion disks around symmetric rotating Ellis wormholes have many distinct properties as compared to quasi-periodic oscillations in accretion disks around rotating Teo wormholes and the Kerr black hole. Still we can distinguish some common features which appear in wormhole spacetimes as opposed to black holes. The most significant ones include the possibility of excitation of stronger resonances such as lower order parametric and forced resonances and the localization of these resonances deep in the region of strong gravitational interaction near the wormhole throat, which will lead to further amplification of the signal.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا