Do you want to publish a course? Click here

Analysis of $W^pm+4gamma$ in the 2HDM Type-I at the LHC

70   0   0.0 ( 0 )
 Added by Yan Wang
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We analyse a light charged Higgs boson in the 2-Higgs Doublet Model (2HDM) Type-I, when its mass satisfies the condition $M_{H^{pm}} < M_{t}+M_{b}$ and the parameter space is consistent with theoretical requirements of self-consistency as well as the latest experimental constraints from Large Hadron Collider (LHC) and other data. Over such a parameter space, wherein the Standard Model (SM)-like state discovered at the LHC in 2012 is the heaviest CP-even state of the 2HDM, it is found that the decay modes of the charged Higgs boson are dominated by $H^{pm} rightarrow W^{pm *} h$. Furthermore, the light neutral Higgs boson $h$ dominantly decays into two photons. Under these conditions, we find that the production and decay process $ p p to H^pm h to {W^pm}^{(*)} h h to l u_{l} + 4 gamma$ ($l=e,mu$) is essentially background free. However, since the $W^{pm(*)}$ could be largely off-shell and the $h$ state is very light, so that both the lepton coming from the former and the photons coming from the latter could be rather soft, we perform here a full Monte Carlo (MC) analysis at the detector level demonstrating that such a $W^{pm} + 4gamma$ signal is very promising, as it would be yielding significant excesses at the LHC with an integrated luminosity of $L=$ 300 $fb^{-1}$ at both $sqrt{s}= 13$ and $14 ~text{TeV}$.



rate research

Read More

We present a comprehensive analysis of observing a light Higgs boson in the mass range $70$ -- $110$ GeV at the 13/14 TeV LHC, in the context of the type-I two-Higgs-doublet model. The decay of the light Higgs to a pair of bottom quarks is dominant in most parts of the parameter space, except in the fermiophobic limit. Here its decay to bosons, (mainly a pair of photons), becomes important. We perform an extensive collider analysis for the $bbar{b}$ and $gamma gamma$ final states. The light scalar is tagged in the highly boosted regimes for the $b bar{b}$ mode to reduce the enormous QCD background. This decay can be observed with a few thousand fb$^{-1}$ of integrated luminosity at the LHC. Near the fermiophobic limit, the decay of the light Higgs to a pair of photons can even be probed with a few hundred fb$^{-1}$ of integrated luminosity at the LHC.
We investigate the viability of observing charged Higgs bosons (H^pm) produced in association with W bosons at the CERN Large Hadron Collider, using the leptonic decay H^+ -> tau^+ nu_tau and hadronic W decay, within the Minimal Supersymmetric Standard Model. Performing a parton level study we show how the irreducible Standard Model background from W + 2 jets can be controlled by applying appropriate cuts. In the standard m_h^max scenario we find a viable signal for large tan beta and intermediate H^pm masses (~ m_t).
An $H^pm W^mp Z$ interaction at the tree level is common feature of new physics models that feature scalar triplets. In this study, we aim to probe the strength of the aforementioned interaction in a model-agnostic fashion at the futuristic 27 TeV proton-proton collider. We assume that the $H^pm$ couples dominantly to ($W^pm,Z$) and ($t,b$). We specifically study the processes that involve the $H^pm W^mp Z$ vertex at the production level, that is, $p p to H^pm j j$ and $p p to Z H^pm$. Moreover, we look into both $H^pm to W^pm Z,~t b$ decays for either production process. Our investigations reveal that the $H^pm j j$ production process has a greater reach compared to $Z H^pm$. Moreover, the discovery potential of a charged Higgs improves markedly with respect to the earlier studies corresponding to lower centre-of-mass energies. Finally, we recast our results in the context of the popular Georgi-Machacek model.
In certain new physics scenarios, a singly charged Higgs boson can couple to both fermions and $W^pm Z$ at tree level. We develop new strategies beyond current experimental searches using $ppto jjH^pm$, $H^pm to tb $ at the Large Hadron Collider (LHC). With the effective $H^pm W^mp Z$ and $H^pm tb$ couplings we perform a model-independent analysis at the collision energy $sqrt{s}=13$~TeV with the integrated luminosity of $3~text{ab}^{-1}$. We derive the discovery prospects and exclusion limits for the charged Higgs boson in the mass range from 200~GeV to 1~TeV. With $|F_{WZ}|,|A_t|sim 0.5-1.0$ and $300~text{GeV}lesssim m_{H^pm}lesssim 400~text{GeV}$, we point out that a discovery significance of $5sigma$ can be achieved. The constraints and projected sensitivities are also discussed in a realistic model, i.e., the modified Georgi-Machacek model without custodial symmetry. Our proposed search would provide direct evidence for a charged Higgs boson $H^pm$ that couples to $W^pm Z$ and $tb$, which can have better sensitivity to the couplings of $H^pm W^mp Z$ and $H^pm tb$ than current searches.
53 - Felix Kling , Shufang Su , Wei Su 2020
Two Higgs Doublet Models (2HDM) provide a simple framework for new physics models with an extended Higgs sector. The current LHC results, including both direct searches for additional non-Standard Model (SM) Higgs bosons, as well as precision measurements of the SM-like Higgs couplings, already provide strong constraints on the 2HDM parameter spaces. In this paper, we examine those constraints for the neutral scalars in the Type-I and Type-II 2HDM. In addition to the direct search channels with SM final states: $H/A to fbar f, VV, Vh, hh$, we study in particular the exotic decay channels of $H/A to AZ/HZ$ once there is a mass hierarchy between the non-SM Higgses. We found that $H/A to AZ/HZ$ channel has unique sensitivity to the alignment limit region which remains unconstrained by conventional searches and Higgs precision measurements. This mode also extends the reach at intermediate $tanbeta$ for heavy $m_A$ that are not covered by the other direct searches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا