Do you want to publish a course? Click here

Kinematics reconstruction of the EAS-like events registered by the TUS detector

49   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Tracking Ultraviolet Set-up (TUS) is the worlds first orbital imaging detector of Ultra High Energy Cosmic Rays (UHECR) and it operated in 2016-2017 as part of the scientific equipment of the Lomonosov satellite. The TUS was developed and manufactured as a prototype of the larger project K-EUSO with the main purpose of testing the efficiency of the method for measuring the ultraviolet signal of extensive air shower (EAS) in the Earths night atmosphere. Despite the low spatial resolution ($sim5times5$ km$^2$ at sea level), several events were recorded which are very similar to EAS as for the signal profile and kinematics. Reconstruction of the parameters of such events is complicated by a short track length, an asymmetry of the image, and an uncertainty in the sensitivity distribution of the TUS channels. An advanced method was developed for the determination of event kinematic parameters including its arrival direction. In the present article, this method is applied for the analysis of 6 EAS-like events recorded by the TUS detector. All events have an out of space arrival direction with zenith angles less than 40{deg}. Remarkably they were found to be over the land rather close to United States airports, which indicates a possible anthropogenic nature of the phenomenon. Detailed analysis revealed a correlation of the reconstructed tracks with direction to airport runways and Very High Frequency (VHF) omnidirectional range stations. The method developed here for reliable reconstruction of kinematic parameters of the track-like events, registered in low spatial resolution, will be useful in future space missions, such as K-EUSO.

rate research

Read More

Cosmic rays arriving at Earth collide with the upper parts of the atmosphere, thereby inducing extensive air showers. When secondary particles from the cascade arrive at the ground, they are measured by surface detector arrays. We describe the methods applied to the measurements of the surface detector of the Pierre Auger Observatory to reconstruct events with zenith angles less than $60^circ$ using the timing and signal information recorded using the water-Cherenkov detector stations. In addition, we assess the accuracy of these methods in reconstructing the arrival directions of the primary cosmic ray particles and the sizes of the induced showers.
The Experimental complex NEVOD includes several different setups for studying various components of extensive air showers (EAS) in the energy range from 10^10 to 10^18 eV. The NEVOD-EAS array for detection of the EAS electron-photon component began its data taking in 2018. It is a distributed system of scintillation detectors installed over an area of about 10^4 m^2. A distinctive feature of this array is its cluster organization with different-altitude layout of the detecting elements. The main goal of the NEVOD-EAS array is to obtain an estimation of the primary particle energy for events measured by various detectors of the Experimental complex NEVOD. This paper describes the design, operation principles and data processing of the NEVOD-EAS array. The criteria for the event selection and the accuracy of the EAS parameters reconstruction obtained on the simulated events are discussed. The results of the preliminary analysis of experimental data obtained during a half-year operation are presented.
Aimed at progress in MeV gamma-ray astronomy which has not yet been well-explored, Compton telescope missions with a variety of detector concepts have been proposed so far. One of the key techniques for these future missions is an event reconstruction algorithm that is able to determine the scattering orders of multiple Compton scattering events and to identify events in which gamma rays escape from the detectors before they deposit all of their energies. We propose a new algorithm that can identify whether the gamma rays escape from the detectors or not, in addition to the scattering order determination. This algorithm also corrects incoming gamma-ray energies for escape events. The developed algorithm is based on the maximum likelihood method, and we present a general formalism of likelihood functions describing physical interactions inside the detector. We also introduce several approximations in the calculation of the likelihood functions for efficient computation. For validation, we have applied the algorithm to simulation data of a Compton telescope using a liquid argon time projection chamber, which is a new type of Compton telescope proposed for the GRAMS mission, and have confirmed that it works successfully for up to 8-hit events. The proposed algorithm can be used for next-generation MeV gamma-ray missions featured by large-volume detectors, e.g., GRAMS and AMEGO.
Experimental complex (EC) NEVOD includes a number of unique experimental facilities for studies of main components of cosmic rays on the Earths surface. The complex is used for the basic research of CR flux characteristics and their interactions in the energy range 10^15 - 10^19 eV, and for applied investigations directed to the development of methods of the muon diagnostics of the atmosphere and the Earths magnetosphere and near-terrestrial space. To extend the experimental capabilities and raising the status of the installation to the Mega Science level, nowadays new large-scale detectors: array for the EAS registration - NEVOD-EAS, detector of atmospheric neutrons - URAN, and large-area coordinate-tracking detector - TREK, are being deployed around EC NEVOD. The description of new detectors and a common trigger system to ensure the joint operation together with other detectors of EC NEVOD are presented.
The PAMELA satellite-borne experiment is providing first direct measurements of Solar Energetic Particles (SEPs) with energies from $sim$80 MeV to several GeV in near-Earth space. Its unique observational capabilities include the possibility of measuring the flux angular distribution and thus investigating possible anisotropies related to SEP events. This paper focuses on the analysis methods developed to estimate SEP energy spectra as a function of the particle pitch angle with respect to the Interplanetary Magnetic Field (IMF). The crucial ingredient is provided by an accurate simulation of the asymptotic exposition of the PAMELA apparatus, based on a realistic reconstruction of particle trajectories in the Earths magnetosphere. As case study, the results of the calculation for the May 17, 2012 event are reported.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا