No Arabic abstract
The PAMELA satellite-borne experiment is providing first direct measurements of Solar Energetic Particles (SEPs) with energies from $sim$80 MeV to several GeV in near-Earth space. Its unique observational capabilities include the possibility of measuring the flux angular distribution and thus investigating possible anisotropies related to SEP events. This paper focuses on the analysis methods developed to estimate SEP energy spectra as a function of the particle pitch angle with respect to the Interplanetary Magnetic Field (IMF). The crucial ingredient is provided by an accurate simulation of the asymptotic exposition of the PAMELA apparatus, based on a realistic reconstruction of particle trajectories in the Earths magnetosphere. As case study, the results of the calculation for the May 17, 2012 event are reported.
The PAMELA satellite experiment is providing first direct measurements of Solar Energetic Particles (SEPs) with energies from about 80 MeV to several GeV in near-Earth space, bridging the low energy data by other space-based instruments and the Ground Level Enhancement (GLE) data by the worldwide network of neutron monitors. Its unique observational capabilities include the possibility of measuring the flux angular distribution and thus investigating possible anisotropies. This work reports the analysis methods developed to estimate the SEP energy spectra as a function of the particle pitch-angle with respect to the Interplanetary Magnetic Field (IMF) direction. The crucial ingredient is provided by an accurate simulation of the asymptotic exposition of the PAMELA apparatus, based on a realistic reconstruction of particle trajectories in the Earths magnetosphere. As case study, the results for the May 17, 2012 event are presented.
The PAMELA satellite experiment is providing comprehensive observations of the interplanetary and magnetospheric radiation in the near-Earth environment. Thanks to its identification capabilities and the semi-polar orbit, PAMELA is able to precisely measure the energetic spectra and the angular distributions of the different cosmic-ray populations over a wide latitude region, including geomagnetically trapped and albedo particles. Its observations comprise the solar energetic particle events between solar cycles 23 and 24, and the geomagnetic cutoff variations during magnetospheric storms. PAMELAs measurements are supported by an accurate analysis of particle trajectories in the Earths magnetosphere based on a realistic geomagnetic field modeling, which allows the classification of particle populations of different origin and the investigation of the asymptotic directions of arrival.
Aimed at progress in MeV gamma-ray astronomy which has not yet been well-explored, Compton telescope missions with a variety of detector concepts have been proposed so far. One of the key techniques for these future missions is an event reconstruction algorithm that is able to determine the scattering orders of multiple Compton scattering events and to identify events in which gamma rays escape from the detectors before they deposit all of their energies. We propose a new algorithm that can identify whether the gamma rays escape from the detectors or not, in addition to the scattering order determination. This algorithm also corrects incoming gamma-ray energies for escape events. The developed algorithm is based on the maximum likelihood method, and we present a general formalism of likelihood functions describing physical interactions inside the detector. We also introduce several approximations in the calculation of the likelihood functions for efficient computation. For validation, we have applied the algorithm to simulation data of a Compton telescope using a liquid argon time projection chamber, which is a new type of Compton telescope proposed for the GRAMS mission, and have confirmed that it works successfully for up to 8-hit events. The proposed algorithm can be used for next-generation MeV gamma-ray missions featured by large-volume detectors, e.g., GRAMS and AMEGO.
Cosmic rays arriving at Earth collide with the upper parts of the atmosphere, thereby inducing extensive air showers. When secondary particles from the cascade arrive at the ground, they are measured by surface detector arrays. We describe the methods applied to the measurements of the surface detector of the Pierre Auger Observatory to reconstruct events with zenith angles less than $60^circ$ using the timing and signal information recorded using the water-Cherenkov detector stations. In addition, we assess the accuracy of these methods in reconstructing the arrival directions of the primary cosmic ray particles and the sizes of the induced showers.
Despite the significant progress achieved in recent years, the physical mechanisms underlying the origin of solar energetic particles (SEPs) are still a matter of debate. The complex nature of both particle acceleration and transport poses challenges to developing a universal picture of SEP events that encompasses both the low-energy (from tens of keV to a few hundreds of MeV) observations made by space-based instruments and the GeV particles detected by the worldwide network of neutron monitors in ground-level enhancements (GLEs). The high-precision data collected by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) satellite experiment offer a unique opportunity to study the SEP fluxes between $sim$80 MeV and a few GeV, significantly improving the characterization of the most energetic events. In particular, PAMELA can measure for the first time with good accuracy the spectral features at moderate and high energies, providing important constraints for current SEP models. In addition, the PAMELA observations allow the relationship between low and high-energy particles to be investigated, enabling a clearer view of the SEP origin. No qualitative distinction between the spectral shapes of GLE, sub-GLE and non-GLE events is observed, suggesting that GLEs are not a separate class, but are the subset of a continuous distribution of SEP events that are more intense at high energies. While the spectral forms found are to be consistent with diffusive shock acceleration theory, which predicts spectral rollovers at high energies that are attributed to particles escaping the shock region during acceleration, further work is required to explore the relative influences of acceleration and transport processes on SEP spectra.