Do you want to publish a course? Click here

Giant Star Forming Complexes in High-z Main Sequence Galaxy Analogues: The Internal Structure of Clumps in DYNAMO Galaxies

100   0   0.0 ( 0 )
 Added by Laura Lenkic
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

To indirectly study the internal structure of giant clumps in main sequence galaxies at $z sim 1-3$, we target very turbulent and gas-rich local analogues from the DYNAMO sample with the Hubble Space Telescope, over a wavelength range of $sim 200-480$ nm. We present a catalog of 58 clumps identified in six DYNAMO galaxies, including the WFC3/UVIS F225W, F336W, and F467M photometry where the ($225-336$) and ($336-467$) colours are sensitive to extinction and stellar population age respectively. We measure the internal colour gradients of clumps themselves to study their age and extinction properties. We find a marked colour trend within individual clumps, where the resolved colour distributions show that clumps generally have bluer ($336-467$) colours (denoting very young ages) in their centers than at their edges, with little variation in the ($225-336$) colour associated with extinction. Furthermore, we find that clumps whose colours suggest they are older, are preferentially located closer toward the centers of their galaxies, and we find no young clumps at small galactocentric distances. Both results are consistent with simulations of high-redshift star forming systems that show clumps form via violent disk instability, and through dynamic processes migrate to the centers of their galaxies to contribute to bulge growth on timescales of a few 100 Myr, while continually forming stars in their centers. When we compare the DYNAMO clumps to those in these simulations, we find the best agreement with the long-lived clumps.



rate research

Read More

With the spatial resolution of the Atacama Large Millimetre Array (ALMA), dusty galaxies in the distant Universe typically appear as single, compact blobs of dust emission, with a median half-light radius, $approx$ 1 kpc. Occasionally, strong gravitational lensing by foreground galaxies or galaxy clusters has probed spatial scales 1-2 orders of magnitude smaller, often revealing late-stage mergers, sometimes with tantalising hints of sub-structure. One lensed galaxy in particular, the Cosmic Eyelash at $z=$ 2.3, has been cited extensively as an example of where the interstellar medium exhibits obvious, pronounced clumps, on a spatial scale of $approx$ 100 pc. Seven orders of magnitude more luminous than giant molecular clouds in the local Universe, these features are presented as circumstantial evidence that the blue clumps observed in many $zsim$ 2-3 galaxies are important sites of ongoing star formation, with significant masses of gas and stars. Here, we present data from ALMA which reveal that the dust continuum of the Cosmic Eyelash is in fact smooth and can be reproduced using two Sersic profiles with effective radii, 1.2 and 4.4 kpc, with no evidence of significant star-forming clumps down to a spatial scale of $approx$ 80 pc and a star-formation rate of $<$ 3 M$_odot$ yr$^{-1}$.
We analyse stellar masses of clumps drawn from a compilation of star-forming galaxies at 1.1<z<3.6. Comparing clumps selected in different ways, and in lensed or blank field galaxies, we examine the effects of spatial resolution and sensitivity on the inferred stellar masses. Large differences are found, with median stellar masses ranging from ~10^9 Msun for clumps in the often-referenced field galaxies to ~10^7 Msun for fainter clumps selected in deep-field or lensed galaxies. We argue that the clump masses, observed in non-lensed galaxies with a limited spatial resolution of ~1 kpc, are artificially increased due to the clustering of clumps of smaller mass. Furthermore, we show that the sensitivity threshold used for the clump selection affects the inferred masses even more strongly than resolution, biasing clumps at the low mass end. Both improved spatial resolution and sensitivity appear to shift the clump stellar mass distribution to lower masses, qualitatively in agreement with clump masses found in recent high-resolution simulations of disk fragmentation. We discuss the nature of the most massive clumps, and we conclude that it is currently not possible to properly establish a meaningful clump stellar mass distribution from observations and to infer the existence and value of a characteristic clump mass scale.
We compare various star formation rate (SFR) indicators for star-forming galaxies at $1.4<z<2.5$ in the COSMOS field. The main focus is on the SFRs from the far-IR (PACS-Herschel data) with those from the ultraviolet, for galaxies selected according to the BzK criterion. FIR-selected samples lead to a vastly different slope of the SFR-stellar mass ($M_*$) relation, compared to that of the dominant main sequence population as measured from the UV, since the FIR selection picks predominantly only a minority of outliers. However, there is overall agreement between the main sequences derived with the two SFR indicators, when stacking on the PACS maps the BzK-selected galaxies. The resulting logarithmic slope of the SFR-{$M_*$} relation is $sim0.8-0.9$, in agreement with that derived from the dust-corrected UV-luminosity. Exploiting deeper 24$mu$m-Spitzer data we have characterized a sub-sample of galaxies with reddening and SFRs poorly constrained, as they are very faint in the $B$ band. The combination of Herschel with Spitzer data have allowed us to largely break the age/reddening degeneracy for these intriguing sources, by distinguishing whether a galaxy is very red in B-z because of being heavily dust reddened, or whether because star formation has been (or is being) quenched. Finally, we have compared our SFR(UV) to the SFRs derived by stacking the radio data and to those derived from the H$alpha$ luminosity of a sample of star-forming galaxies at $1.4<z<1.7$. The two sets of SFRs are broadly consistent as they are with the SFRs derived from the UV and by stacking the corresponding PACS data in various mass bins.
We present results of sub-arcsec ALMA observations of CO(2-1) and CO(5-4) toward a massive main sequence galaxy at z = 1.45 in the SXDS/UDS field, aiming at examining the internal distribution and properties of molecular gas in the galaxy. Our target galaxy consists of the bulge and disk, and has a UV clump in the HST images. The CO emission lines are clearly detected and the CO(5-4)/CO(2-1) flux ratio (R_52) is ~1, similar to that of the Milky Way. Assuming a metallicity dependent CO-toH_2 conversion factor and a CO(2-1)/CO(1-0) flux ratio of 2 (the Milky Way value), the molecular gas mass and the gas mass fraction (f_gas = molecular gas mass / (molecular gas mass + stellar mass)) are estimated to be ~1.5x10^11 M_Sun and ~0.55, respectively. We find that R_52 peak coincides with the position of the UV clump and its value is approximately two times higher than the galactic average. This result implies high gas density and/or high temperature in the UV clump, which qualitatively agrees with a numerical simulation of a clumpy galaxy. The CO(2-1) distribution is well represented by a rotating disk model and its half-light radius is ~2.3 kpc. Compared to the stellar distribution, the molecular gas is more concentrated in the central region of the galaxy. We also find that f_gas decreases from ~0.6 at the galactic center to ~0.2 at 3xhalf-light radius, indicating that the molecular gas is distributed in more central region of the galaxy than stars and seems to associate with the bulge rather than the stellar disk.
We compare the relations among various integrated characteristics of ~25,000 low-redshift (z<1.0) compact star-forming galaxies (CSFGs) from Data Release 16 (DR16) of the Sloan Digital Sky Survey (SDSS) and of high-redshift (z>1.5) star-forming galaxies (SFGs) with respect to oxygen abundances, stellar masses M*, far-UV absolute magnitudes M(FUV), star-formation rates SFR and specific star-formation rates sSFR, Lyman-continuum photon production efficiencies (xi_ion), UV continuum slopes beta, [OIII]5007/[OII]3727 and [NeIII]3868/[OII]3727 ratios, and emission-line equivalent widths EW([OII]3727), EW([OIII]5007), and EW(Halpha). We find that the relations for low-z CSFGs with high equivalent widths of the Hbeta emission line, EW(Hbeta)>100A, and high-z SFGs are very similar, implying close physical properties in these two categories of galaxies. Thus, CSFGs are likely excellent proxies for the SFGs in the high-z Universe. They also extend to galaxies with lower stellar masses, down to ~10^6 Msun, and to absolute FUV magnitudes as faint as -14 mag. Thanks to their proximity, CSFGs can be studied in much greater detail than distant SFGs. Therefore, the relations between the integrated characteristics of the large sample of CSFGs studied here can prove very useful for our understanding of high-z dwarf galaxies in future observations with large ground-based and space telescopes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا