No Arabic abstract
Certification and quantification of correlations for multipartite states of quantum systems appear to be a central task in quantum information theory. We give here a unitary quantum-mechanical perspective of both entanglement and Einstein-Podolsky-Rosen (EPR) steering of continuous-variable multimode states. This originates in the Heisenberg uncertainty relations for the canonical quadrature operators of the modes. Correlations of two-party $(N, text{vs} ,1)$-mode states are examined by using the variances of a pair of suitable EPR-like observables. It turns out that the uncertainty sum of these nonlocal variables is bounded from below by local uncertainties and is strengthened differently for separable states and for each one-way unsteerable ones. The analysis of the minimal properly normalized sums of these variances yields necessary conditions of separability and EPR unsteerability of $(N, text{vs} ,1)$-mode states in both possible ways of steering. When the states and the performed measurements are Gaussian, then these conditions are precisely the previously-known criteria of separability and one-way unsteerability.
Einstein, Podolsky and Rosen (EPR) pointed out that the quantum-mechanical description of physical reality implied an unphysical, instantaneous action between distant measurements. To avoid such an action at a distance, EPR concluded that Quantum Mechanics had to be incomplete. However, its extensions involving additional hidden variables, allowing for the recovery of determinism and locality, have been disproved experimentally (Bells theorem). Here, I present an opposite solution of the paradox based on the greater indeterminism of the modern Quantum Field Theory (QFT) description of Particle Physics, that prevents the preparation of any state having a definite number of particles. The resulting uncertainty in photons radiation has interesting consequences in Quantum Information Theory (e.g. cryptography and teleportation). Moreover, since it allows for less elements of EPR physical reality than the old non-relativistic Quantum Mechanics, QFT satisfies the EPR condition of completeness without the need of hidden variables. The residual physical reality does never violate locality, thus the unique objective proof of quantum nonlocality is removed in an interpretation-independent way. On the other hand, the supposed nonlocality of the EPR correlations turns out to be a problem of the interpretation of the theory. If we do not rely on hidden variables or new physics beyond QFT, the unique viable interpretation is a minimal statistical one, that preserves locality and Lorentz symmetry.
EPR steering is an asymmetric form of correlations which is intermediate between quantum entanglement and Bell nonlocality, and can be exploited for quantum communication with one untrusted party. In particular, steering of continuous variable Gaussian states has been extensively studied as a manifestation of the EPR paradox. While most of these studies focused on quadrature measurements for steering detection, two recent works revealed that there exist Gaussian states which are only steerable by non-Gaussian measurements. In this paper we perform a systematic investigation of EPR steering of bipartite Gaussian states by pseudospin measurements, complementing and extending previous findings. We first derive the density matrix elements of two-mode squeezed thermal states in the Fock basis, which may be of independent interest. We then use such a representation to investigate steering of these states as detected by a nonlinear criterion, based on second moments of the pseudospin correlation matrix. This analysis reveals previously unexplored regimes where non-Gaussian measurements are more effective than Gaussian ones to witness steering of Gaussian states in the presence of local noise. We further consider an alternative set of pseudospin observables, whose expectation value can be expressed compactly in terms of Wigner functions for all two-mode Gaussian states. However, according to the adopted criterion, these observables are found to be always less sensitive than Gaussian observables for steering detection. Finally, we investigate continuous variable Werner states, which are non-Gaussian mixtures of Gaussian states, and find that pseudospin measurements are always more effective than Gaussian ones to reveal their steerability. Our results provide useful insights on the role of non-Gaussian measurements in characterizing quantum correlations of Gaussian and non-Gaussian states.
Einstein-Podolsky-Rosen (EPR) steering is a form of bipartite quantum correlation that is intermediate between entanglement and Bell nonlocality. It allows for entanglement certification when the measurements performed by one of the parties are not characterised (or are untrusted) and has applications in quantum key distribution. Despite its foundational and applied importance, EPR steering lacks a quantitative assessment. Here we propose a way of quantifying this phenomenon and use it to study the steerability of several quantum states. In particular we show that every pure entangled state is maximally steerable, the projector onto the anti-symmetric subspace is maximally steerable for all dimensions, we provide a new example of one-way steering, and give strong support that states with positive-partial-transposition are not steerable.
We investigate the separability of the two-mode Gaussian states by using the variances of a pair of Einstein-Podolsky-Rosen (EPR)-like observables. Our starting point is inspired by the general necessary condition of separability introduced by Duan {em et al.} [Phys. Rev. Lett. {bf 84}, 2722 (2000)]. We evaluate the minima of the normalized forms of both the product and sum of such variances, as well as that of a regularized sum. Making use of Simons separability criterion, which is based on the condition of positivity of the partial transpose (PPT) of the density matrix [Phys. Rev. Lett. {bf 84}, 2726 (2000)], we prove that these minima are separability indicators in their own right. They appear to quantify the greatest amount of EPR-like correlations that can be created in a two-mode Gaussian state by means of local operations. Furthermore, we reconsider the EPR-like approach to the separability of two-mode Gaussian states which was developed by Duan {em et al.} with no reference to the PPT condition. By optimizing the regularized form of their EPR-like uncertainty sum, we derive a separability indicator for any two-mode Gaussian state. We prove that the corresponding EPR-like condition of separability is manifestly equivalent to Simons PPT one. The consistency of these two distinct approaches (EPR-like and PPT) affords a better understanding of the examined separability problem, whose explicit solution found long ago by Simon covers all situations of interest.
We consider the uncertainty bound on the sum of variances of two incompatible observables in order to derive a corresponding steering inequality. Our steering criterion when applied to discrete variables yields the optimum steering range for two qubit Werner states in the two measurement and two outcome scenario. We further employ the derived steering relation for several classes of continuous variable systems. We show that non-Gaussian entangled states such as the photon subtracted squeezed vacuum state and the two-dimensional harmonic oscillator state furnish greater violation of the sum steering relation compared to the Reid criterion as well as the entropic steering criterion. The sum steering inequality provides a tighter steering condition to reveal the steerability of continuous variable states.