Do you want to publish a course? Click here

Magnomechanics in suspended magnetic beams

363   0   0.0 ( 0 )
 Added by Kalle Kansanen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cavity optomechanical systems have become a popular playground for controllable studies of nonlinear interactions between light and motion. Owing to the large speed of light, realizing cavity optomechanics in the microwave frequency range requires cavities up to several mm in size, hence making it hard to embed several of them on the same chip. An alternative scheme with much smaller footprint is provided by magnomechanics, where the electromagnetic cavity is replaced by a magnet undergoing ferromagnetic resonance, and the optomechanical coupling originates from magnetic shape anisotropy. Here, we consider the magnomechanical interaction occurring in a suspended magnetic beam -- a scheme in which both magnetic and mechanical modes physically overlap and can also be driven individually. We show that a sizable interaction can be produced if the beam has some initial static deformation, as is often the case due to unequal strains in the constituent materials. We also show how the magnetism affects the magnetomotive detection of the vibrations, and how the magnomechanics interaction can be used in microwave signal amplification. Finally, we discuss experimental progress towards realizing the scheme.



rate research

Read More

Dynamical backaction resulting from radiation pressure forces in optomechanical systems has proven to be a versatile tool for manipulating mechanical vibrations. Notably, dynamical backaction has resulted in the cooling of a mechanical resonator to its ground-state, driving phonon lasing, the generation of entangled states, and observation of the optical-spring effect. In certain magnetic materials, mechanical vibrations can interact with magnetic excitations (magnons) via the magnetostrictive interaction, resulting in an analogous magnon-induced dynamical backaction. In this article, we directly observe the impact of magnon-induced dynamical backaction on a spherical magnetic samples mechanical vibrations. Moreover, dynamical backaction effects play a crucial role in many recent theoretical proposals; thus, our work provides the foundation for future experimental work pursuing many of these theoretical proposals.
Magnons, namely spin waves, are collective spin excitations in ferromagnets, and their control through coupling with other excitations is a key technology for future hybrid spintronic devices. Although strong coupling has been demonstrated with microwave photonic structures, an alternative approach permitting high density integration and minimized electromagnetic crosstalk is required. Here we report a planar cavity magnomechanical system, where the cavity of surface acoustic waves enhances the spatial and spectral power density to thus implement magnon-phonon coupling at room temperature. Excitation of spin-wave resonance involves significant acoustic power absorption, whereas the collective spin motion reversely exerts a back-action force on the cavity dynamics. The cavity frequency and quality-factor are significantly modified by the back-action effect, and the resultant cooperativity exceeds unity, suggesting coherent interaction between magnons and phonons. The demonstration of a chip-scale magnomechanical system paves the way to the development of novel spin-acoustic technologies for classical and quantum applications.
We propose a framework for inducing strong optomechanical effects in a suspended carbon nanotube based on deformation potential exciton-phonon coupling. The excitons are confined using an inhomogeneous axial electric field which generates optically active quantum dots with a level spacing in the milli-electronvolt range and a characteristic size in the 10-nanometer range. A transverse field induces a tunable parametric coupling between the quantum dot and the flexural modes of the nanotube mediated by electron-phonon interactions. We derive the corresponding excitonic deformation potentials and show that this interaction enables efficient optical ground-state cooling of the fundamental mode and could allow us to realise the strong and ultra-strong coupling regimes of the Jaynes-Cummings and Rabi models.
We report a change of three orders of magnitudes in the resistance of a suspended bilayer graphene flake which varies from a few k$Omega$s in the high carrier density regime to several M$Omega$s around the charge neutrality point (CNP). The corresponding transport gap is 8 meV at 0.3 K. The sequence of appearing quantum Hall plateaus at filling factor $ u=2$ followed by $ u=1$ suggests that the observed gap is caused by the symmetry breaking of the lowest Landau level. Investigation of the gap in a tilted magnetic field indicates that the resistance at the CNP shows a weak linear decrease for increasing total magnetic field. Those observations are in agreement with a spontaneous valley splitting at zero magnetic field followed by splitting of the spins originating from different valleys with increasing magnetic field. Both, the transport gap and $B$ field response point toward spin polarized layer antiferromagnetic state as a ground state in the bilayer graphene sample. The observed non-trivial dependence of the gap value on the normal component of $B$ suggests possible exchange mechanisms in the system.
The optomechanical coupling of quantum dots and flexural mechanical modes is studied in suspended nanophononic strings. The investigated devices are designed and monolithically fabricated on an (Al)GaAs heterostructure. Radio frequency elastic waves with frequencies ranging between $f$=250 MHz to 400 MHz are generated as Rayleigh surface acoustic waves on the unpatterned substrate and injected as Lamb waves in the nanophononic string. Quantum dots inside the nanophononic string exhibit a 15-fold enhanced optomechanical modulation compared to those dynamically strained by the Rayleigh surface acoustic wave. Detailed finite element simulations of the phononic mode spectrum of the nanophononic string confirm, that the observed modulation arises from valence band deformation potential coupling via shear strain. The corresponding optomechanical coupling parameter is quantified to $0.15 mathrm{meV nm^{-1}}$. This value exceeds that reported for vibrating nanorods by approximately one order of magnitude at 100 times higher frequencies. Using this value, a derive vertical displacements in the range of 10 nm is deduced from the experimentally observed modulation. The results represent an important step towards the creation of large scale optomechanical circuits interfacing single optically active quantum dots with optical and mechanical waves.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا