No Arabic abstract
Dynamical backaction resulting from radiation pressure forces in optomechanical systems has proven to be a versatile tool for manipulating mechanical vibrations. Notably, dynamical backaction has resulted in the cooling of a mechanical resonator to its ground-state, driving phonon lasing, the generation of entangled states, and observation of the optical-spring effect. In certain magnetic materials, mechanical vibrations can interact with magnetic excitations (magnons) via the magnetostrictive interaction, resulting in an analogous magnon-induced dynamical backaction. In this article, we directly observe the impact of magnon-induced dynamical backaction on a spherical magnetic samples mechanical vibrations. Moreover, dynamical backaction effects play a crucial role in many recent theoretical proposals; thus, our work provides the foundation for future experimental work pursuing many of these theoretical proposals.
Dynamical backaction has proven to be a versatile tool in cavity optomechanics, allowing for precise manipulation of a mechanical resonators motion using confined optical photons. In this work, we present measurements of a silicon whispering-gallery-mode optomechanical cavity where backaction originates from opposing radiation pressure and photothermal forces, with the former dictating the optomechanical spring effect and the latter governing the optomechanical damping. At high enough optical input powers, we show that the photothermal force drives the mechanical resonator into self-oscillations for a pump beam detuned to the lower-frequency side of the optical resonance, contrary to what one would expect for a radiation-pressure-dominated optomechanical device. Using a fully nonlinear model, we fit the hysteretic response of the optomechanical cavity to extract its properties, demonstrating that this non-sideband-resolved device exists in a regime where photothermal damping could be used to cool its motion to the quantum ground state.
Magnons, namely spin waves, are collective spin excitations in ferromagnets, and their control through coupling with other excitations is a key technology for future hybrid spintronic devices. Although strong coupling has been demonstrated with microwave photonic structures, an alternative approach permitting high density integration and minimized electromagnetic crosstalk is required. Here we report a planar cavity magnomechanical system, where the cavity of surface acoustic waves enhances the spatial and spectral power density to thus implement magnon-phonon coupling at room temperature. Excitation of spin-wave resonance involves significant acoustic power absorption, whereas the collective spin motion reversely exerts a back-action force on the cavity dynamics. The cavity frequency and quality-factor are significantly modified by the back-action effect, and the resultant cooperativity exceeds unity, suggesting coherent interaction between magnons and phonons. The demonstration of a chip-scale magnomechanical system paves the way to the development of novel spin-acoustic technologies for classical and quantum applications.
Cavity optomechanical systems have become a popular playground for controllable studies of nonlinear interactions between light and motion. Owing to the large speed of light, realizing cavity optomechanics in the microwave frequency range requires cavities up to several mm in size, hence making it hard to embed several of them on the same chip. An alternative scheme with much smaller footprint is provided by magnomechanics, where the electromagnetic cavity is replaced by a magnet undergoing ferromagnetic resonance, and the optomechanical coupling originates from magnetic shape anisotropy. Here, we consider the magnomechanical interaction occurring in a suspended magnetic beam -- a scheme in which both magnetic and mechanical modes physically overlap and can also be driven individually. We show that a sizable interaction can be produced if the beam has some initial static deformation, as is often the case due to unequal strains in the constituent materials. We also show how the magnetism affects the magnetomotive detection of the vibrations, and how the magnomechanics interaction can be used in microwave signal amplification. Finally, we discuss experimental progress towards realizing the scheme.
We predict that an atomic Bose-Einstein condensate strongly coupled to an intracavity optical lattice can undergo resonant tunneling and directed transport when a constant and uniform bias force is applied. The bias force induces Bloch oscillations, causing amplitude and phase modulation of the lattice which resonantly modifies the site-to-site tunneling. For the right choice of parameters a net atomic current is generated. The transport velocity can be oriented oppositely to the bias force, with its amplitude and direction controlled by the detuning between the pump laser and the cavity. The transport can also be enhanced through imbalanced pumping of the two counter-propagating running wave cavity modes. Our results add to the cold atoms quantum simulation toolbox, with implications for quantum sensing and metrology.
Equilibrium topological phases are robust against weak static disorder but may break down in the strong disorder regime. Here we explore the stability of the quench-induced emergent dynamical topology in the presence of dynamical noise. We develop an analytic theory and show that for weak noise, the quantum dynamics induced by quenching an initial trivial phase to Chern insulating regime exhibits robust emergent topology on certain momentum subspaces called band inversion surfaces (BISs). The dynamical topology is protected by the minimal oscillation frequency over the BISs, mimicking a bulk gap of the dynamical phase. Singularities emerge in the quench dynamics, with the minimal oscillation frequency vanishing on the BISs if increasing noise to critical strength, manifesting a dynamical topological transition, beyond which the emergent topology breaks down. Two types of dynamical transitions are predicted. Interestingly, we predict a sweet spot in the critical transition when noise couples to all three spin components in the same strength, in which case the dynamical topology survives at arbitrarily strong noise regime. This work unveils novel features of the dynamical topology under dynamical noise, which can be probed with control in experiment.