Do you want to publish a course? Click here

Finite basis problems for stalactic, taiga, sylvester and Baxter monoids

253   0   0.0 ( 0 )
 Added by Wenting Zhang
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Stalactic, taiga, sylvester and Baxter monoids arise from the combinatorics of tableaux by identifying words over a fixed ordered alphabet whenever they produce the same tableau via some insertion algorithm. In this paper, three sufficient conditions under which semigroups are finitely based are given. By applying these sufficient conditions, it is shown that all stalactic and taiga monoids of rank greater than or equal to $2$ are finitely based and satisfy the same identities, that all sylvester monoids of rank greater than or equal to $2$ are finitely based and satisfy the same identities and that all Baxter monoids of rank greater than or equal to $2$ are finitely based and satisfy the same identities.



rate research

Read More

213 - Karl Auinger , Yuzhu Chen , Xun Hu 2014
We prove a sufficient condition under which a semigroup admits no finite identity basis. As an application, it is shown that the identities of the Kauffman monoid $mathcal{K}_n$ are nonfinitely based for each $nge 3$. This result holds also for the case when $mathcal{K}_n$ is considered as an involution semigroup under either of its natural involutions.
In an earlier paper, the second-named author has described the identities holding in the so-called Catalan monoids. Here we extend this description to a certain family of Hecke--Kiselman monoids including the Kiselman monoids $mathcal{K}_n$. As a consequence, we conclude that the identities of $mathcal{K}_n$ are nonfinitely based for every $nge 4$ and exhibit a finite identity basis for the identities of each of the monoids $mathcal{K}_2$ and $mathcal{K}_3$. In the third version a question left open in the initial submission has beed answered.
This paper presents new results on the identities satisfied by the sylvester and Baxter monoids. We show how to embed these monoids, of any rank strictly greater than 2, into a direct product of copies of the corresponding monoid of rank 2. This confirms that all monoids of the same family, of rank greater than or equal to 2, satisfy exactly the same identities. We then give a complete characterization of those identities, and prove that the varieties generated by the sylvester and the Baxter monoids have finite axiomatic rank, by giving a finite basis for them.
We study a class of inverse monoids of the form M = Inv< X | w=1 >, where the single relator w has a combinatorial property that we call sparse. For a sparse word w, we prove that the word problem for M is decidable. We also show that the set of words in (X cup X^{-1})^* that represent the identity in M is a deterministic context free language, and that the set of geodesics in the Schutzenberger graph of the identity of M is a regular language.
In this paper we introduce and study some geometric objects associated to Artin monoids. The Deligne complex for an Artin group is a cube complex that was introduced by the second author and Davis (1995) to study the K(pi,1) conjecture for these groups. Using a notion of Artin monoid cosets, we construct a version of the Deligne complex for Artin monoids. We show that for any Artin monoid this cube complex is contractible. Furthermore, we study the embedding of the monoid Deligne complex into the Deligne complex for the corresponding Artin group. We show that for any Artin group this is a locally isometric embedding. In the case of FC-type Artin groups this result can be strengthened to a globally isometric embedding, and it follows that the monoid Deligne complex is CAT(0) and its image in the Deligne complex is convex. We also consider the Cayley graph of an Artin group, and investigate properties of the subgraph spanned by elements of the Artin monoid. Our final results show that for a finite type Artin group, the monoid Cayley graph embeds isometrically, but not quasi-convexly, into the group Cayley graph.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا