Do you want to publish a course? Click here

The Finite Basis Problem for Kauffman Monoids

213   0   0.0 ( 0 )
 Added by Mikhail Volkov
 Publication date 2014
  fields
and research's language is English




Ask ChatGPT about the research

We prove a sufficient condition under which a semigroup admits no finite identity basis. As an application, it is shown that the identities of the Kauffman monoid $mathcal{K}_n$ are nonfinitely based for each $nge 3$. This result holds also for the case when $mathcal{K}_n$ is considered as an involution semigroup under either of its natural involutions.



rate research

Read More

In an earlier paper, the second-named author has described the identities holding in the so-called Catalan monoids. Here we extend this description to a certain family of Hecke--Kiselman monoids including the Kiselman monoids $mathcal{K}_n$. As a consequence, we conclude that the identities of $mathcal{K}_n$ are nonfinitely based for every $nge 4$ and exhibit a finite identity basis for the identities of each of the monoids $mathcal{K}_2$ and $mathcal{K}_3$. In the third version a question left open in the initial submission has beed answered.
Stalactic, taiga, sylvester and Baxter monoids arise from the combinatorics of tableaux by identifying words over a fixed ordered alphabet whenever they produce the same tableau via some insertion algorithm. In this paper, three sufficient conditions under which semigroups are finitely based are given. By applying these sufficient conditions, it is shown that all stalactic and taiga monoids of rank greater than or equal to $2$ are finitely based and satisfy the same identities, that all sylvester monoids of rank greater than or equal to $2$ are finitely based and satisfy the same identities and that all Baxter monoids of rank greater than or equal to $2$ are finitely based and satisfy the same identities.
103 - Tara Brough 2018
This paper considers the word problem for free inverse monoids of finite rank from a language theory perspective. It is shown that no free inverse monoid has context-free word problem; that the word problem of the free inverse monoid of rank $1$ is both $2$-context-free (an intersection of two context-free languages) and ET0L; that the co-word problem of the free inverse monoid of rank $1$ is context-free; and that the word problem of a free inverse monoid of rank greater than $1$ is not poly-context-free.
We develop the theory of fragile words by introducing the concept of eraser morphism and extending the concept to more general contexts such as (free) inverse monoids. We characterize the image of the eraser morphism in the free group case, and show that it has decidable membership problem. We establish several algorithmic properties of the class of finite-${cal{J}}$-above (inverse) monoids. We prove that the image of the eraser morphism in the free inverse monoid case (and more generally, in the finite-${cal{J}}$-above case) has decidable membership problem, and relate its kernel to the free group fragile words.
In this paper we introduce and study some geometric objects associated to Artin monoids. The Deligne complex for an Artin group is a cube complex that was introduced by the second author and Davis (1995) to study the K(pi,1) conjecture for these groups. Using a notion of Artin monoid cosets, we construct a version of the Deligne complex for Artin monoids. We show that for any Artin monoid this cube complex is contractible. Furthermore, we study the embedding of the monoid Deligne complex into the Deligne complex for the corresponding Artin group. We show that for any Artin group this is a locally isometric embedding. In the case of FC-type Artin groups this result can be strengthened to a globally isometric embedding, and it follows that the monoid Deligne complex is CAT(0) and its image in the Deligne complex is convex. We also consider the Cayley graph of an Artin group, and investigate properties of the subgraph spanned by elements of the Artin monoid. Our final results show that for a finite type Artin group, the monoid Cayley graph embeds isometrically, but not quasi-convexly, into the group Cayley graph.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا