Do you want to publish a course? Click here

Spin-dependent dark matter-electron interactions

80   0   0.0 ( 0 )
 Added by Cheng-Pang Liu
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Detectors with low thresholds for electron recoil open a new window to direct searches of sub-GeV dark matter (DM) candidates. In the past decade, many strong limits on DM-electron interactions have been set, but most on the one which is spin-independent (SI) of both dark matter and electron spins. In this work, we study DM-atom scattering through a spin-dependent (SD) interaction at leading order (LO), using well-benchmarked, state-of-the-art atomic many-body calculations. Exclusion limits on the SD DM-electron cross section are derived with data taken from experiments with xenon and germanium detectors at leading sensitivities. In the DM mass range of 0.1 - 10 GeV, the best limits set by the XENON1T experiment: $sigma_e^{textrm{(SD)}}<10^{-41}-10^{-40},textrm{cm}^2$ are comparable to the ones drawn on DM-neutron and DM-proton at slightly bigger DM masses. The detectors responses to the LO SD and SI interactions are analyzed. In nonrelativistic limit, a constant ratio between them leads to an indistinguishability of the SD and SI recoil energy spectra. Relativistic calculations however show the scaling starts to break down at a few hundreds of eV, where spin-orbit effects become sizable. We discuss the prospects of disentangling the SI and SD components in DM-electron interactions via spectral shape measurements, as well as having spin-sensitive experimental signatures without SI background.



rate research

Read More

A liquid-methane ionization chamber is proposed as a setup to search for spin-dependent interactions of dark-matter particles with hydrogen
We consider minimal dark matter scenarios featuring momentum-dependent couplings of the dark sector to the Standard Model. We derive constraints from existing LHC searches in the monojet channel, estimate the future LHC sensitivity for an integrated luminosity of 300 fb$^{-1}$, and compare with models exhibiting conventional momentum-independent interactions with the dark sector. In addition to being well motivated by (composite) pseudo-Goldstone dark matter scenarios, momentum-dependent couplings are interesting as they weaken direct detection constraints. For a specific dark matter mass, the LHC turns out to be sensitive to smaller signal cross-sections in the momentum-dependent case, by virtue of the harder jet transverse-momentum distribution.
97 - Yi Liao 2007
Unparticles as suggested by Georgi are identities that are not constrained by dispersion relations but are governed by their scaling dimension, d. Their coupling to particles can result in macroscopic interactions between matter, that are generally an inverse nonintegral power of distance. This is totally different from known macroscopic forces. We use the precisely measured long-ranged spin-spin interaction of electrons to constrain unparticle couplings to the electron. For 1<d<1.5 the axial vector unparticle coupling is excluded; and for 1<d<1.3 the pseudoscalar and vector couplings are also ruled out. These bounds and the ones for other ranges of d exceed or are complementary to those obtained previously from exotic positronium decays.
The perturbative unitarity bound is studied in the monojet process at LHC. The production of the dark matter is described by the low-energy effective theory. The analysis of the dark matter signal is not validated, if the unitarity condition is violated. It is shown that the current LHC analysis the effective theory breaks down, at least, when the dark matter is lighter than O(100) GeV. Future prospects for $sqrt{s}$ = 14 TeV are also discussed. The result is independent of physics in high energy scales.
A bevy of light dark matter direct detection experiments have been proposed, targeting spin-independent dark matter scattering. In order to be exhaustive, non-standard signatures that have been investigated in the WIMP window including spin-dependent dark matter scattering also need to be looked into in the light dark matter parameter space. In this work, we promote this endeavor by deriving indirect limits on sub-GeV spin-dependent dark matter through terrestrial and astrophysical limits on the forces that mediate this scattering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا