Do you want to publish a course? Click here

Hydrodynamic Model of H$alpha$ Emission from Accretion Shocks of Proto-Giant Planet and Circumplanetary Disk

430   0   0.0 ( 0 )
 Added by Shinsuke Takasao
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent observations have detected excess H$alpha$ emission from young stellar systems with an age of several Myr such as PDS 70. One-dimensional radiation-hydrodynamic models of shock-heated flows that we developed previously demonstrate that planetary accretion flows of $>$ a few ten km s$^{-1}$ can produce H$alpha$ emission. It is, however, a challenge to understand the accretion process of proto-giant planets from observations of such shock-originated emission because of a huge gap in scale between the circumplanetary disk (CPD) and the microscopic accretion shock. To overcome the scale gap problem, we combine two-dimensional, high-spatial-resolution global hydrodynamic simulations and the one-dimensional local radiation hydrodynamic model of the shock-heated flow. From such combined simulations for the protoplanet-CPD system, we find that the H$alpha$ emission is mainly produced in localized areas on the protoplanetary surface. The accretion shocks above CPD produce much weaker H$alpha$ emission (approximately 1-2 orders of magnitude smaller in luminosity). Nevertheless, the accretion shocks above CPD significantly affect the accretion process onto the protoplanet. The accretion occurs at a quasi-steady rate, if averaged on a 10-day timescale, but its rate shows variability on shorter timescales. The disk surface accretion layers including the CPD-shocks largely fluctuate, which results in the time-variable accretion rate and H$alpha$ luminosity of the protoplanet. We also model the spectral emission profile of the H$alpha$ line and find that the line profile is less time-variable, despite the large variability in luminosity. High-spectral resolution spectroscopic observation and monitoring will be key to reveal the property of the accretion process.

rate research

Read More

Advances in high-resolution imaging have revealed H$alpha$ emission separated from the host star. It is generally believed that the emission is associated with forming planets in protoplanetary disks. However, the nature of this emission is still not fully understood. Here we report a modeling effort of H$alpha$ emission from the planets around the young star PDS 70. Using standard magnetospheric accretion models previously applied to accreting young stars, we find that the observed line fluxes can be reproduced using a range of parameters relevant to PDS 70b and c, with the mean mass accretion rate of log(${rm dot{M}}$) = $-8.0pm0.6$ M$_{rm Jup}$ yr$^{-1}$ and $-8.1pm0.6$ M$_{rm Jup}$ yr$^{-1}$ for PDS 70b and PDS 70c, respectively. Our results suggest that H$alpha$ emission from young planets can originate in the magnetospheric accretion of mass from the circumplanetary disk. We find that empirical relationships between mass accretion rate and H$alpha$ line properties frequently used in T Tauri stars are not applicable in the planetary mass regime. In particular, the correlations between line flux and mass accretion rate underpredict the accretion rate by about an order of magnitude, and the width at the 10% height of the line is insensitive to the accretion rate at ${rm dot{M}}$ $< 10^{-8}$ M$_{rm Jup}$ yr$^{-1}$.
Recent discoveries of young exoplanets within their natal disks offer exciting opportunities to study ongoing planet formation. In particular, a planets mass accretion rate can be constrained by observing the accretion-induced excess emission. So far, planetary accretion is only probed by the H$alpha$ line, which is then converted to a total accretion luminosity using correlations derived for stars. However, the majority of the accretion luminosity is expected to emerge from hydrogen continuum emission, and is best measured in the ultraviolet (UV). In this paper, we present HST/WFC3/UVIS F336W (UV) and F656N (H$alpha$) high-contrast imaging observations of PDS 70. Applying a suite of novel observational techniques, we detect the planet PDS 70 b with signal-to-noise ratios of 5.3 and 7.8 in the F336W and F656N bands, respectively. This is the first time that an exoplanet has been directly imaged in the UV. Our observed H$alpha$ flux of PDS 70 b is higher by $3.5sigma$ than the most recent published result. However, the light curve retrieved from our observations does not support greater than 30% variability in the planets H$alpha$ emission in six epochs over a five-month timescale. We estimate a mass accretion rate of $1.4pm0.2times10^{-8}M_{mathrm{Jup}}/mathrm{yr}$. H$alpha$ accounts for 36% of the total accretion luminosity. Such a high proportion of energy released in line emission suggests efficient production of H$alpha$ emission in planetary accretion, and motivates using the H$alpha$ band for searches of accreting planets. These results demonstrate HST/WFC3/UVISs excellent high-contrast imaging performance and highlight its potential for planet formation studies.
63 - J. Szulagyi , L. Mayer , T. Quinn 2016
Circumplanetary disks can be found around forming giant planets, regardless of whether core accretion or gravitational instability built the planet. We carried out state-of-the-art hydrodynamical simulations of the circumplanetary disks for both formation scenarios, using as similar initial conditions as possible to unveil possible intrinsic differences in the circumplanetary disk mass and temperature between the two formation mechanisms. We found that the circumplanetary disks mass linearly scales with the circumstellar disk mass. Therefore, in an equally massive protoplanetary disk, the circumplanetary disks formed in the disk instability model can be only a factor of eight more massive than their core-accretion counterparts. On the other hand, the bulk circumplanetary disk temperature differs by more than an order of magnitude between the two cases. The subdisks around planets formed by gravitational instability have a characteristic temperature below 100 K, while the core accretion circumplanetary disks are hot, with temperatures even greater than 1000 K when embedded in massive, optically thick protoplanetary disks. We explain how this difference can be understood as the natural result of the different formation mechanisms. We argue that the different temperatures should persist up to the point when a full-fledged gas giant forms via disk instability, hence our result provides a convenient criteria for observations to distinguish between the two main formation scenarios by measuring the bulk temperature in the planet vicinity.
67 - J. Szulagyi , F. Masset , E. Lega 2016
We present three-dimensional simulations with nested meshes of the dynamics of the gas around a Jupiter mass planet with the JUPITER and FARGOCA codes. We implemented a radiative transfer module into the JUPITER code to account for realistic heating and cooling of the gas. We focus on the circumplanetary gas flow, determining its characteristics at very high resolution ($80%$ of Jupiters diameter). In our nominal simulation where the temperature evolves freely by the radiative module and reaches 13000 K at the planet, a circumplanetary envelope was formed filling the entire Roche-lobe. Because of our equation of state is simplified and probably overestimates the temperature, we also performed simulations with limited maximal temperatures in the planet region (1000 K, 1500 K, and 2000 K). In these fixed temperature cases circumplanetary disks (CPDs) were formed. This suggests that the capability to form a circumplanetary disk is not simply linked to the mass of the planet and its ability to open a gap. Instead, the gas temperature at the planets location, which depends on its accretion history, plays also fundamental role. The CPDs in the simulations are hot and cooling very slowly, they have very steep temperature and density profiles, and are strongly sub-Keplerian. Moreover, the CPDs are fed by a strong vertical influx, which shocks on the CPD surfaces creating a hot and luminous shock-front. In contrast, the pressure supported circumplanetary envelope is characterized by internal convection and almost stalled rotation.
Spiral density waves are known to exist in many astrophysical disks, potentially affecting disk structure and evolution. We conduct a numerical study of the effects produced by a density wave, evolving into a shock, on the characteristics of the underlying disk. We measure the deposition of angular momentum in the disk by spiral shocks of different strength and verify the analytical prediction of Rafikov (2016) for the behavior of this quantity, using shock amplitude (which is potentially observable) as the input variable. Good agreement between the theory and numerics is found as we vary shock amplitude (including highly nonlinear shocks), disk aspect ratio, equation of state, radial profiles of the background density and temperature, and pattern speed of the wave. We show that high numerical resolution is required to properly capture shock-driven transport, especially at low wave amplitudes. We also demonstrate that relating local mass accretion rate to shock dissipation in rapidly evolving disks requires accounting for the time-dependent contribution to the angular momentum budget, caused by the time dependence of the radial pressure support. We provide a simple analytical prescription for the behavior of this contribution and demonstrate its excellent agreement with the simulation results. Using these findings we formulate a theoretical framework for studying one-dimensional (in radius) evolution of the shock-mediated accretion disks, which can be applied to a variety of astrophysical systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا