Do you want to publish a course? Click here

Real-Time Regression Analysis of Streaming Clustered Data With Possible Abnormal Data Batches

422   0   0.0 ( 0 )
 Added by Lan Luo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper develops an incremental learning algorithm based on quadratic inference function (QIF) to analyze streaming datasets with correlated outcomes such as longitudinal data and clustered data. We propose a renewable QIF (RenewQIF) method within a paradigm of renewable estimation and incremental inference, in which parameter estimates are recursively renewed with current data and summary statistics of historical data, but with no use of any historical subject-level raw data. We compare our renewable estimation method with both offline QIF and offline generalized estimating equations (GEE) approach that process the entire cumulative subject-level data, and show theoretically and numerically that our renewable procedure enjoys statistical and computational efficiency. We also propose an approach to diagnose the homogeneity assumption of regression coefficients via a sequential goodness-of-fit test as a screening procedure on occurrences of abnormal data batches. We implement the proposed methodology by expanding existing Sparks Lambda architecture for the operation of statistical inference and data quality diagnosis. We illustrate the proposed methodology by extensive simulation studies and an analysis of streaming car crash datasets from the National Automotive Sampling System-Crashworthiness Data System (NASS CDS).



rate research

Read More

While experiments on fusion plasmas produce high-dimensional data time series with ever increasing magnitude and velocity, data analysis has been lagging behind this development. For example, many data analysis tasks are often performed in a manual, ad-hoc manner some time after an experiment. In this article we introduce the DELTA framework that facilitates near real-time streaming analysis of big and fast fusion data. By streaming measurement data from fusion experiments to a high-performance compute center, DELTA allows to perform demanding data analysis tasks in between plasma pulses. This article describe the modular and expandable software architecture of DELTA and presents performance benchmarks of its individual components as well as of entire workflows. Our focus is on the streaming analysis of ECEi data measured at KSTAR on NERSCs supercomputers and we routinely achieve data transfer rates of about 500 Megabyte per second. We show that a demanding turbulence analysis workload can be distributed among multiple GPUs and executes in under 5 minutes. We further discuss how DELTA uses modern database systems and container orchestration services to provide web-based real-time data visualization. For the case of ECEi data we demonstrate how data visualizations can be augmented with outputs from machine learning models. By providing session leaders and physics operators results of higher order data analysis using live visualization they may monitor the evolution of a long-pulse discharge in near real-time and may make more informed decision on how to configure the machine for the next shot.
148 - Jie Hu 2021
Correlated data are ubiquitous in todays data-driven society. A fundamental task in analyzing these data is to understand, characterize and utilize the correlations in them in order to conduct valid inference. Yet explicit regression analysis of correlations has been so far limited to longitudinal data, a special form of correlated data, while implicit analysis via mixed-effects models lacks generality as a full inferential tool. This paper proposes a novel regression approach for modelling the correlation structure, leveraging a new generalized z-transformation. This transformation maps correlation matrices that are constrained to be positive definite to vectors with un-restricted support, and is order-invariant. Building on these two properties, we develop a regression model to relate the transformed parameters to any covariates. We show that coupled with a mean and a variance regression model, the use of maximum likelihood leads to asymptotically normal parameter estimates, and crucially enables statistical inference for all the parameters. The performance of our framework is demonstrated in extensive simulation. More importantly, we illustrate the use of our model with the analysis of the classroom data, a highly unbalanced multilevel clustered data with within-class and within-school correlations, and the analysis of the malaria immune response data in Benin, a longitudinal data with time-dependent covariates in addition to time. Our analyses reveal new insights not previously known.
A population-averaged additive subdistribution hazard model is proposed to assess the marginal effects of covariates on the cumulative incidence function to analyze correlated failure time data subject to competing risks. This approach extends the population-averaged additive hazard model by accommodating potentially dependent censoring due to competing events other than the event of interest. Assuming an independent working correlation structure, an estimating equations approach is considered to estimate the regression coefficients and a sandwich variance estimator is proposed. The sandwich variance estimator accounts for both the correlations between failure times as well as the those between the censoring times, and is robust to misspecification of the unknown dependency structure within each cluster. We further develop goodness-of-fit tests to assess the adequacy of the additive structure of the subdistribution hazard for each covariate, as well as for the overall model. Simulation studies are carried out to investigate the performance of the proposed methods in finite samples; and we illustrate our methods by analyzing the STrategies to Reduce Injuries and Develop confidence in Elders (STRIDE) study.
Spatial regression or geographically weighted regression models have been widely adopted to capture the effects of auxiliary information on a response variable of interest over a region. In contrast, relationships between response and auxiliary variables are expected to exhibit complex spatial patterns in many applications. This paper proposes a new approach for spatial regression, called spatially clustered regression, to estimate possibly clustered spatial patterns of the relationships. We combine K-means-based clustering formulation and penalty function motivated from a spatial process known as Potts model for encouraging similar clustering in neighboring locations. We provide a simple iterative algorithm to fit the proposed method, scalable for large spatial datasets. Through simulation studies, the proposed method demonstrates its superior performance to existing methods even under the true structure does not admit spatial clustering. Finally, the proposed method is applied to crime event data in Tokyo and produces interpretable results for spatial patterns. The R code is available at https://github.com/sshonosuke/SCR.
This paper investigates the problem of making inference about a parametric model for the regression of an outcome variable $Y$ on covariates $(V,L)$ when data are fused from two separate sources, one which contains information only on $(V, Y)$ while the other contains information only on covariates. This data fusion setting may be viewed as an extreme form of missing data in which the probability of observing complete data $(V,L,Y)$ on any given subject is zero. We have developed a large class of semiparametric estimators, which includes doubly robust estimators, of the regression coefficients in fused data. The proposed method is DR in that it is consistent and asymptotically normal if, in addition to the model of interest, we correctly specify a model for either the data source process under an ignorability assumption, or the distribution of unobserved covariates. We evaluate the performance of our various estimators via an extensive simulation study, and apply the proposed methods to investigate the relationship between net asset value and total expenditure among U.S. households in 1998, while controlling for potential confounders including income and other demographic variables.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا