Do you want to publish a course? Click here

Competing Risks Regression for Clustered Data via the Marginal Additive Subdistribution Hazard Model

128   0   0.0 ( 0 )
 Added by Xinyuan Chen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A population-averaged additive subdistribution hazard model is proposed to assess the marginal effects of covariates on the cumulative incidence function to analyze correlated failure time data subject to competing risks. This approach extends the population-averaged additive hazard model by accommodating potentially dependent censoring due to competing events other than the event of interest. Assuming an independent working correlation structure, an estimating equations approach is considered to estimate the regression coefficients and a sandwich variance estimator is proposed. The sandwich variance estimator accounts for both the correlations between failure times as well as the those between the censoring times, and is robust to misspecification of the unknown dependency structure within each cluster. We further develop goodness-of-fit tests to assess the adequacy of the additive structure of the subdistribution hazard for each covariate, as well as for the overall model. Simulation studies are carried out to investigate the performance of the proposed methods in finite samples; and we illustrate our methods by analyzing the STrategies to Reduce Injuries and Develop confidence in Elders (STRIDE) study.



rate research

Read More

Many time-to-event studies are complicated by the presence of competing risks. Such data are often analyzed using Cox models for the cause specific hazard function or Fine-Gray models for the subdistribution hazard. In practice regression relationships in competing risks data with either strategy are often complex and may include nonlinear functions of covariates, interactions, high-dimensional parameter spaces and nonproportional cause specific or subdistribution hazards. Model misspecification can lead to poor predictive performance. To address these issues, we propose a novel approach to flexible prediction modeling of competing risks data using Bayesian Additive Regression Trees (BART). We study the simulation performance in two-sample scenarios as well as a complex regression setting, and benchmark its performance against standard regression techniques as well as random survival forests. We illustrate the use of the proposed method on a recently published study of patients undergoing hematopoietic stem cell transplantation.
Observational longitudinal data on treatments and covariates are increasingly used to investigate treatment effects, but are often subject to time-dependent confounding. Marginal structural models (MSMs), estimated using inverse probability of treatment weighting or the g-formula, are popular for handling this problem. With increasing development of advanced causal inference methods, it is important to be able to assess their performance in different scenarios to guide their application. Simulation studies are a key tool for this, but their use to evaluate causal inference methods has been limited. This paper focuses on the use of simulations for evaluations involving MSMs in studies with a time-to-event outcome. In a simulation, it is important to be able to generate the data in such a way that the correct form of any models to be fitted to those data is known. However, this is not straightforward in the longitudinal setting because it is natural for data to be generated in a sequential conditional manner, whereas MSMs involve fitting marginal rather than conditional hazard models. We provide general results that enable the form of the correctly-specified MSM to be derived based on a conditional data generating procedure, and show how the results can be applied when the conditional hazard model is an Aalen additive hazard or Cox model. Using conditional additive hazard models is advantageous because they imply additive MSMs that can be fitted using standard software. We describe and illustrate a simulation algorithm. Our results will help researchers to effectively evaluate causal inference methods via simulation.
81 - Tianjian Zhou , Yuan Ji 2021
Most clinical trials involve the comparison of a new treatment to a control arm (e.g., the standard of care) and the estimation of a treatment effect. External data, including historical clinical trial data and real-world observational data, are commonly available for the control arm. Borrowing information from external data holds the promise of improving the estimation of relevant parameters and increasing the power of detecting a treatment effect if it exists. In this paper, we propose to use Bayesian additive regression trees (BART) for incorporating external data into the analysis of clinical trials, with a specific goal of estimating the conditional or population average treatment effect. BART naturally adjusts for patient-level covariates and captures potentially heterogeneous treatment effects across different data sources, achieving flexible borrowing. Simulation studies demonstrate that BART compares favorably to a hierarchical linear model and a normal-normal hierarchical model. We illustrate the proposed method with an acupuncture trial.
We develop a Bayesian sum-of-trees model where each tree is constrained by a regularization prior to be a weak learner, and fitting and inference are accomplished via an iterative Bayesian backfitting MCMC algorithm that generates samples from a posterior. Effectively, BART is a nonparametric Bayesian regression approach which uses dimensionally adaptive random basis elements. Motivated by ensemble methods in general, and boosting algorithms in particular, BART is defined by a statistical model: a prior and a likelihood. This approach enables full posterior inference including point and interval estimates of the unknown regression function as well as the marginal effects of potential predictors. By keeping track of predictor inclusion frequencies, BART can also be used for model-free variable selection. BARTs many features are illustrated with a bake-off against competing methods on 42 different data sets, with a simulation experiment and on a drug discovery classification problem.
We apply Gaussian process (GP) regression, which provides a powerful non-parametric probabilistic method of relating inputs to outputs, to survival data consisting of time-to-event and covariate measurements. In this context, the covariates are regarded as the `inputs and the event times are the `outputs. This allows for highly flexible inference of non-linear relationships between covariates and event times. Many existing methods, such as the ubiquitous Cox proportional hazards model, focus primarily on the hazard rate which is typically assumed to take some parametric or semi-parametric form. Our proposed model belongs to the class of accelerated failure time models where we focus on directly characterising the relationship between covariates and event times without any explicit assumptions on what form the hazard rates take. It is straightforward to include various types and combinations of censored and truncated observations. We apply our approach to both simulated and experimental data. We then apply multiple output GP regression, which can handle multiple potentially correlated outputs for each input, to competing risks survival data where multiple event types can occur. By tuning one of the model parameters we can control the extent to which the multiple outputs (the time-to-event for each risk) are dependent thus allowing the specification of correlated risks. Simulation studies suggest that in some cases assuming dependence can lead to more accurate predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا