No Arabic abstract
Higher-order exceptional points have attracted increased attention in recent years due to their enhanced sensitivity and distinct topological features. Here, we show that nonlocal acoustic metagratings that enable precise and simultaneous control over their muliple orders of diffraction, can serve as a robust platform for investigating higher-order exceptional points in free space. The proposed metagratings, not only could advance the fundamental research of arbitrary order exceptional points, but could also empower unconventional free-space wave manipulation for applications related to sensing and extremely asymmetrical wave control.
Exceptional points (EPs), at which both eigenvalues and eigenvectors coalesce, are ubiquitous and unique features of non-Hermitian systems. Second-order EPs are by far the most studied due to their abundance, requiring only the tuning of two real parameters, which is less than the three parameters needed to generically find ordinary Hermitian eigenvalue degeneracies. Higher-order EPs generically require more fine-tuning, and are thus assumed to play a much less prominent role. Here, however, we illuminate how physically relevant symmetries make higher-order EPs dramatically more abundant and conceptually richer. More saliently, third-order EPs generically require only two real tuning parameters in presence of either $PT$ symmetry or a generalized chiral symmetry. Remarkably, we find that these different symmetries yield topologically distinct types of EPs. We illustrate our findings in simple models, and show how third-order EPs with a generic $sim k^{1/3}$ dispersion are protected by PT-symmetry, while third-order EPs with a $sim k^{1/2}$ dispersion are protected by the chiral symmetry emerging in non-Hermitian Lieb lattice models. More generally, we identify stable, weak, and fragile aspects of symmetry-protected higher-order EPs, and tease out their concomitant phenomenology.
Hermitian theories play a major role in understanding the physics of most phenomena. It has been found only in the past decade that non-Hermiticity enables unprecedented effects such as exceptional points, spectral singularities and bulk Fermi arcs. Recent studies further show that non-Hermiticity can fundamentally change the topological band theory, leading to the non-Hermitian band topology and non-Hermitian skin effect, as confirmed in one-dimensional (1D) systems. However, in higher dimensions, these non-Hermitian effects remain unexplored in experiments. Here, we demonstrate the spin-polarized, higher-order non-Hermitian skin effect in two-dimensional (2D) acoustic metamaterials. Using a lattice of coupled whisper-gallery acoustic resonators, we realize a spinful 2D higher-order topological insulator (HOTI) where the spin-up and spin-down states are emulated by the anti-clockwise and clockwise modes, respectively. We find that the non-Hermiticity drives wave localizations toward opposite edge boundaries depending on the spin polarizations. More interestingly, for finite systems with both edge and corner boundaries, the higher-order non-Hermitian skin effect leads to wave localizations toward two corner boundaries for the bulk, edge and corner states in a spin-dependent manner. We further show that such a non-Hermitian skin effect enables rich wave manipulation through the loss configuration in each unit-cell. The reported spin-dependent, higher-order non-Hermitian skin effect reveals the interplay between higher-order topology and non-Hermiticity, which is further enriched by the spin degrees of freedom. This unveils a new horizon in the study of non-Hermitian physics and the design of non-Hermitian metamaterials.
Exceptional points (EPs) are degeneracies in open wave systems with coalescence of at least two energy levels and their corresponding eigenstates. In higher dimensions, more complex EP physics not found in two-state systems is observed. We consider the emergence and interaction of multiple EPs in a four coupled optical waveguides system by non-Hermitian coupling showing a unique EP formation pattern in a phase diagram. In addition, absolute phase rigidities are computed to show the mixing of the different states in definite parameter regimes. Our results could be potentially important for developing further understanding of EP physics in higher dimensions via generalized paradigm of nonHermitian coupling for a new generation of parity-time (PT) devices.
Standard exceptional points (EPs) are non-Hermitian degeneracies that occur in open systems. At an EP, the Taylor series expansion becomes singular and fails to converge -- a feature that was exploited for several applications. Here, we theoretically introduce and experimentally demonstrate a new class of parity-time symmetric systems [implemented using radio frequency (rf) circuits] that combine EPs with another type of mathematical singularity associated with the poles of complex functions. These nearly divergent exceptional points can exhibit an unprecedentedly large eigenvalue bifurcation beyond those obtained by standard EPs. Our results pave the way for building a new generation of telemetering and sensing devices with superior performance.
Parity-time (PT)-symmetric Hamiltonians have widespread significance in non-Hermitian physics. A PT-symmetric Hamiltonian can exhibit distinct phases with either real or complex eigenspectrum, while the transition points in between, the so-called exceptional points, give rise to a host of critical behaviors that holds great promise for applications. For spatially periodic non-Hermitian systems, PT symmetries are commonly characterized and observed in line with the Bloch band theory, with exceptional points dwelling in the Brillouin zone. Here, in nonunitary quantum walks of single photons, we uncover a novel family of exceptional points beyond this common wisdom. These non-Bloch exceptional points originate from the accumulation of bulk eigenstates near boundaries, known as the non-Hermitian skin effect, and inhabit a generalized Brillouin zone. Our finding opens the avenue toward a generalized PT-symmetry framework, and reveals the intriguing interplay between PT symmetry and non-Hermitian skin effect.