Do you want to publish a course? Click here

Model-Centric Volumetric Point Cloud Attributes

184   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Point clouds have recently gained interest, especially for real-time applications and for 3D-scanned material, such as is used in autonomous driving, architecture, and engineering, to model real estate for renovation or display. Point clouds are associated with geometry information and attributes such as color. Be the color unique or direction-dependent (in the case of plenoptic point clouds), it reflects the colors observed by cameras displaced around the object. Hence, not only are the viewing references assumed, but the illumination spectrum and illumination geometry is also implicit. We propose a model-centric description of the 3D object, that is independent of the illumination and of the position of the cameras. We want to be able to describe the objects themselves such that, at a later stage, the rendering of the model may decide where to place illumination, from which it may calculate the image viewed by a given camera. We want to be able to describe transparent or translucid objects, mirrors, fishbowls, fog and smoke. Volumetric clouds may allow us to describe the air, however ``empty, and introduce air particles, in a manner independent of the viewer position. For that, we rely on some eletromagnetic properties to arrive at seven attributes per voxel that would describe the material and its color or transparency. Three attributes are for the transmissivity of each color, three are for the attenuation of each color, and another attribute is for diffuseness. These attributes give information about the object to the renderer, with whom lies the decision on how to render and depict each object.



rate research

Read More

We propose an intra frame predictive strategy for compression of 3D point cloud attributes. Our approach is integrated with the region adaptive graph Fourier transform (RAGFT), a multi-resolution transform formed by a composition of localized block transforms, which produces a set of low pass (approximation) and high pass (detail) coefficients at multiple resolutions. Since the transform operations are spatially localized, RAGFT coefficients at a given resolution may still be correlated. To exploit this phenomenon, we propose an intra-prediction strategy, in which decoded approximation coefficients are used to predict uncoded detail coefficients. The prediction residuals are then quantized and entropy coded. For the 8i dataset, we obtain gains up to 0.5db as compared to intra predicted point cloud compresion based on the region adaptive Haar transform (RAHT).
Compression of point clouds has so far been confined to coding the positions of a discrete set of points in space and the attributes of those discrete points. We introduce an alternative approach based on volumetric functions, which are functions defined not just on a finite set of points, but throughout space. As in regression analysis, volumetric functions are continuous functions that are able to interpolate values on a finite set of points as linear combinations of continuous basis functions. Using a B-spline wavelet basis, we are able to code volumetric functions representing both geometry and attributes. Geometry is represented implicitly as the level set of a volumetric function (the signed distance function or similar). Attributes are represented by a volumetric function whose coefficients can be regarded as a critically sampled orthonormal transform that generalizes the recent successful region-adaptive hierarchical (or Haar) transform to higher orders. Experimental results show that both geometry and attribute compression using volumetric functions improve over those used in the emerging MPEG Point Cloud Compression standard.
We present a network architecture for processing point clouds that directly operates on a collection of points represented as a sparse set of samples in a high-dimensional lattice. Naively applying convolutions on this lattice scales poorly, both in terms of memory and computational cost, as the size of the lattice increases. Instead, our network uses sparse bilateral convolutional layers as building blocks. These layers maintain efficiency by using indexing structures to apply convolutions only on occupied parts of the lattice, and allow flexible specifications of the lattice structure enabling hierarchical and spatially-aware feature learning, as well as joint 2D-3D reasoning. Both point-based and image-based representations can be easily incorporated in a network with such layers and the resulting model can be trained in an end-to-end manner. We present results on 3D segmentation tasks where our approach outperforms existing state-of-the-art techniques.
Existing interactive visualization tools for deep learning are mostly applied to the training, debugging, and refinement of neural network models working on natural images. However, visual analytics tools are lacking for the specific application of x-ray image classification with multiple structural attributes. In this paper, we present an interactive system for domain scientists to visually study the multiple attributes learning models applied to x-ray scattering images. It allows domain scientists to interactively explore this important type of scientific images in embedded spaces that are defined on the model prediction output, the actual labels, and the discovered feature space of neural networks. Users are allowed to flexibly select instance images, their clusters, and compare them regarding the specified visual representation of attributes. The exploration is guided by the manifestation of model performance related to mutual relationships among attributes, which often affect the learning accuracy and effectiveness. The system thus supports domain scientists to improve the training dataset and model, find questionable attributes labels, and identify outlier images or spurious data clusters. Case studies and scientists feedback demonstrate its functionalities and usefulness.
110 - Qi Yang , Zhan Ma , Yiling Xu 2020
We propose the GraphSIM -- an objective metric to accurately predict the subjective quality of point cloud with superimposed geometry and color impairments. Motivated by the facts that human vision system is more sensitive to the high spatial-frequency components (e.g., contours, edges), and weighs more to the local structural variations rather individual point intensity, we first extract geometric keypoints by resampling the reference point cloud geometry information to form the object skeleton; we then construct local graphs centered at these keypoints for both reference and distorted point clouds, followed by collectively aggregating color gradient moments (e.g., zeroth, first, and second) that are derived between all other points and centered keypoint in the same local graph for significant feature similarity (a.k.a., local significance) measurement; Final similarity index is obtained by pooling the local graph significance across all color channels and by averaging across all graphs. Our GraphSIM is validated using two large and independent point cloud assessment datasets that involve a wide range of impairments (e.g., re-sampling, compression, additive noise), reliably demonstrating the state-of-the-art performance for all distortions with noticeable gains in predicting the subjective mean opinion score (MOS), compared with those point-wise distance-based metrics adopted in standardization reference software. Ablation studies have further shown that GraphSIM is generalized to various scenarios with consistent performance by examining its key modules and parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا