No Arabic abstract
With the development of the Internet of Things(IoT) and Artificial Intelligence(AI) technologies, human activity recognition has enabled various applications, such as smart homes and assisted living. In this paper, we target a new healthcare application of human activity recognition, early mobility recognition for Intensive Care Unit(ICU) patients. Early mobility is essential for ICU patients who suffer from long-time immobilization. Our system includes accelerometer-based data collection from ICU patients and an AI model to recognize patients early mobility. To improve the model accuracy and stability, we identify features that are insensitive to sensor orientations and propose a segment voting process that leverages a majority voting strategy to recognize each segments activity. Our results show that our system improves model accuracy from 77.78% to 81.86% and reduces the model instability (standard deviation) from 16.69% to 6.92%, compared to the same AI model without our feature engineering and segment voting process.
Patients with severe Coronavirus disease 19 (COVID-19) typically require supplemental oxygen as an essential treatment. We developed a machine learning algorithm, based on a deep Reinforcement Learning (RL), for continuous management of oxygen flow rate for critical ill patients under intensive care, which can identify the optimal personalized oxygen flow rate with strong potentials to reduce mortality rate relative to the current clinical practice. Basically, we modeled the oxygen flow trajectory of COVID-19 patients and their health outcomes as a Markov decision process. Based on individual patient characteristics and health status, a reinforcement learning based oxygen control policy is learned and real-time recommends the oxygen flow rate to reduce the mortality rate. We assessed the performance of proposed methods through cross validation by using a retrospective cohort of 1,372 critically ill patients with COVID-19 from New York University Langone Health ambulatory care with electronic health records from April 2020 to January 2021. The mean mortality rate under the RL algorithm is lower than standard of care by 2.57% (95% CI: 2.08- 3.06) reduction (P<0.001) from 7.94% under the standard of care to 5.37 % under our algorithm and the averaged recommended oxygen flow rate is 1.28 L/min (95% CI: 1.14-1.42) lower than the rate actually delivered to patients. Thus, the RL algorithm could potentially lead to better intensive care treatment that can reduce mortality rate, while saving the oxygen scarce resources. It can reduce the oxygen shortage issue and improve public health during the COVID-19 pandemic.
Despite decades of clinical research, sepsis remains a global public health crisis with high mortality, and morbidity. Currently, when sepsis is detected and the underlying pathogen is identified, organ damage may have already progressed to irreversible stages. Effective sepsis management is therefore highly time-sensitive. By systematically analysing trends in the plethora of clinical data available in the intensive care unit (ICU), an early prediction of sepsis could lead to earlier pathogen identification, resistance testing, and effective antibiotic and supportive treatment, and thereby become a life-saving measure. Here, we developed and validated a machine learning (ML) system for the prediction of sepsis in the ICU. Our analysis represents the largest multi-national, multi-centre in-ICU study for sepsis prediction using ML to date. Our dataset contains $156,309$ unique ICU admissions, which represent a refined and harmonised subset of five large ICU databases originating from three countries. Using the international consensus definition Sepsis-3, we derived hourly-resolved sepsis label annotations, amounting to $26,734$ ($17.1%$) septic stays. We compared our approach, a deep self-attention model, to several clinical baselines as well as ML baselines and performed an extensive internal and external validation within and across databases. On average, our model was able to predict sepsis with an AUROC of $0.847 pm 0.050$ (internal out-of sample validation) and $0.761 pm 0.052$ (external validation). For a harmonised prevalence of $17%$, at $80%$ recall our model detects septic patients with $39%$ precision 3.7 hours in advance.
Trauma mortality results from a multitude of non-linear dependent risk factors including patient demographics, injury characteristics, medical care provided, and characteristics of medical facilities; yet traditional approach attempted to capture these relationships using rigid regression models. We hypothesized that a transfer learning based machine learning algorithm could deeply understand a trauma patients condition and accurately identify individuals at high risk for mortality without relying on restrictive regression model criteria. Anonymous patient visit data were obtained from years 2007-2014 of the National Trauma Data Bank. Patients with incomplete vitals, unknown outcome, or missing demographics data were excluded. All patient visits occurred in U.S. hospitals, and of the 2,007,485 encounters that were retrospectively examined, 8,198 resulted in mortality (0.4%). The machine intelligence model was evaluated on its sensitivity, specificity, positive and negative predictive value, and Matthews Correlation Coefficient. Our model achieved similar performance in age-specific comparison models and generalized well when applied to all ages simultaneously. While testing for confounding factors, we discovered that excluding fall-related injuries boosted performance for adult trauma patients; however, it reduced performance for children. The machine intelligence model described here demonstrates similar performance to contemporary machine intelligence models without requiring restrictive regression model criteria or extensive medical expertise.
Deep learning models have achieved expert-level performance in healthcare with an exclusive focus on training accurate models. However, in many clinical environments such as intensive care unit (ICU), real-time model serving is equally if not more important than accuracy, because in ICU patient care is simultaneously more urgent and more expensive. Clinical decisions and their timeliness, therefore, directly affect both the patient outcome and the cost of care. To make timely decisions, we argue the underlying serving system must be latency-aware. To compound the challenge, health analytic applications often require a combination of models instead of a single model, to better specialize individual models for different targets, multi-modal data, different prediction windows, and potentially personalized predictions. To address these challenges, we propose HOLMES-an online model ensemble serving framework for healthcare applications. HOLMES dynamically identifies the best performing set of models to ensemble for highest accuracy, while also satisfying sub-second latency constraints on end-to-end prediction. We demonstrate that HOLMES is able to navigate the accuracy/latency tradeoff efficiently, compose the ensemble, and serve the model ensemble pipeline, scaling to simultaneously streaming data from 100 patients, each producing waveform data at 250~Hz. HOLMES outperforms the conventional offline batch-processed inference for the same clinical task in terms of accuracy and latency (by order of magnitude). HOLMES is tested on risk prediction task on pediatric cardio ICU data with above 95% prediction accuracy and sub-second latency on 64-bed simulation.
Background: In the United States, 5.7 million patients are admitted annually to intensive care units (ICU), with costs exceeding $82 billion. Although close monitoring and dynamic assessment of patient acuity are key aspects of ICU care, both are limited by the time constraints imposed on healthcare providers. Methods: Using the University of Florida Health (UFH) Integrated Data Repository as Honest Broker, we created a database with electronic health records data from a retrospective study cohort of 38,749 adult patients admitted to ICU at UF Health between 06/01/2014 and 08/22/2019. This repository includes demographic information, comorbidities, vital signs, laboratory values, medications with date and timestamps, and diagnoses and procedure codes for all index admission encounters as well as encounters within 12 months prior to index admission and 12 months follow-up. We developed algorithms to identify acuity status of the patient every four hours during each ICU stay. Results: We had 383,193 encounters (121,800 unique patients) admitted to the hospital, and 51,073 encounters (38,749 unique patients) with at least one ICU stay that lasted more than four hours. These patients requiring ICU admission had longer median hospital stay (7 days vs. 1 day) and higher in-hospital mortality (9.6% vs. 0.4%) compared with those not admitted to the ICU. Among patients who were admitted to the ICU and expired during hospital admission, more deaths occurred in the ICU than on general hospital wards (7.4% vs. 0.8%, respectively). Conclusions: We developed phenotyping algorithms that determined patient acuity status every four hours while admitted to the ICU. This approach may be useful in developing prognostic and clinical decision-support tools to aid patients, caregivers, and providers in shared decision-making processes regarding resource use and escalation of care.