Do you want to publish a course? Click here

Multimodal Trajectory Prediction Conditioned on Lane-Graph Traversals

315   0   0.0 ( 0 )
 Added by Nachiket Deo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Accurately predicting the future motion of surrounding vehicles requires reasoning about the inherent uncertainty in driving behavior. This uncertainty can be loosely decoupled into lateral (e.g., keeping lane, turning) and longitudinal (e.g., accelerating, braking). We present a novel method that combines learned discrete policy rollouts with a focused decoder on subsets of the lane graph. The policy rollouts explore different goals given current observations, ensuring that the model captures lateral variability. Longitudinal variability is captured by our latent variable model decoder that is conditioned on various subsets of the lane graph. Our model achieves state-of-the-art performance on the nuScenes motion prediction dataset, and qualitatively demonstrates excellent scene compliance. Detailed ablations highlight the importance of the policy rollouts and the decoder architecture.



rate research

Read More

We propose a Deep RObust Goal-Oriented trajectory prediction Network (DROGON) for accurate vehicle trajectory prediction by considering behavioral intentions of vehicles in traffic scenes. Our main insight is that the behavior (i.e., motion) of drivers can be reasoned from their high level possible goals (i.e., intention) on the road. To succeed in such behavior reasoning, we build a conditional prediction model to forecast goal-oriented trajectories with the following stages: (i) relational inference where we encode relational interactions of vehicles using the perceptual context; (ii) intention estimation to compute the probability distributions of intentional goals based on the inferred relations; and (iii) behavior reasoning where we reason about the behaviors of vehicles as trajectories conditioned on the intentions. To this end, we extend the proposed framework to the pedestrian trajectory prediction task, showing the potential applicability toward general trajectory prediction.
109 - Ross Greer , Nachiket Deo , 2020
Predicting a vehicles trajectory is an essential ability for autonomous vehicles navigating through complex urban traffic scenes. Birds-eye-view roadmap information provides valuable information for making trajectory predictions, and while state-of-the-art models extract this information via image convolution, auxiliary loss functions can augment patterns inferred from deep learning by further encoding common knowledge of social and legal driving behaviors. Since human driving behavior is inherently multimodal, models which allow for multimodal output tend to outperform single-prediction models on standard metrics. We propose a loss function which enhances such models by enforcing expected driving rules on all predicted modes. Our contribution to trajectory prediction is twofold; we propose a new metric which addresses failure cases of the off-road rate metric by penalizing trajectories that oppose the ascribed heading (flow direction) of a driving lane, and we show this metric to be differentiable and therefore suitable as an auxiliary loss function. We then use this auxiliary loss to extend the the standard multiple trajectory prediction (MTP) and MultiPath models, achieving improved results on the nuScenes prediction benchmark by predicting trajectories which better conform to the lane-following rules of the road.
We present CoverNet, a new method for multimodal, probabilistic trajectory prediction for urban driving. Previous work has employed a variety of methods, including multimodal regression, occupancy maps, and 1-step stochastic policies. We instead frame the trajectory prediction problem as classification over a diverse set of trajectories. The size of this set remains manageable due to the limited number of distinct actions that can be taken over a reasonable prediction horizon. We structure the trajectory set to a) ensure a desired level of coverage of the state space, and b) eliminate physically impossible trajectories. By dynamically generating trajectory sets based on the agents current state, we can further improve our methods efficiency. We demonstrate our approach on public, real-world self-driving datasets, and show that it outperforms state-of-the-art methods.
We address the problem of forecasting pedestrian and vehicle trajectories in unknown environments, conditioned on their past motion and scene structure. Trajectory forecasting is a challenging problem due to the large variation in scene structure and the multimodal distribution of future trajectories. Unlike prior approaches that directly learn one-to-many mappings from observed context to multiple future trajectories, we propose to condition trajectory forecasts on plans sampled from a grid based policy learned using maximum entropy inverse reinforcement learning (MaxEnt IRL). We reformulate MaxEnt IRL to allow the policy to jointly infer plausible agent goals, and paths to those goals on a coarse 2-D grid defined over the scene. We propose an attention based trajectory generator that generates continuous valued future trajectories conditioned on state sequences sampled from the MaxEnt policy. Quantitative and qualitative evaluation on the publicly available Stanford drone and NuScenes datasets shows that our model generates trajectories that are diverse, representing the multimodal predictive distribution, and precise, conforming to the underlying scene structure over long prediction horizons.
Pedestrian trajectory prediction is a critical yet challenging task, especially for crowded scenes. We suggest that introducing an attention mechanism to infer the importance of different neighbors is critical for accurate trajectory prediction in scenes with varying crowd size. In this work, we propose a novel method, AVGCN, for trajectory prediction utilizing graph convolutional networks (GCN) based on human attention (A denotes attention, V denotes visual field constraints). First, we train an attention network that estimates the importance of neighboring pedestrians, using gaze data collected as subjects perform a birds eye view crowd navigation task. Then, we incorporate the learned attention weights modulated by constraints on the pedestrians visual field into a trajectory prediction network that uses a GCN to aggregate information from neighbors efficiently. AVGCN also considers the stochastic nature of pedestrian trajectories by taking advantage of variational trajectory prediction. Our approach achieves state-of-the-art performance on several trajectory prediction benchmarks, and the lowest average prediction error over all considered benchmarks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا