Do you want to publish a course? Click here

Trajectory Forecasts in Unknown Environments Conditioned on Grid-Based Plans

119   0   0.0 ( 0 )
 Added by Nachiket Deo
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We address the problem of forecasting pedestrian and vehicle trajectories in unknown environments, conditioned on their past motion and scene structure. Trajectory forecasting is a challenging problem due to the large variation in scene structure and the multimodal distribution of future trajectories. Unlike prior approaches that directly learn one-to-many mappings from observed context to multiple future trajectories, we propose to condition trajectory forecasts on plans sampled from a grid based policy learned using maximum entropy inverse reinforcement learning (MaxEnt IRL). We reformulate MaxEnt IRL to allow the policy to jointly infer plausible agent goals, and paths to those goals on a coarse 2-D grid defined over the scene. We propose an attention based trajectory generator that generates continuous valued future trajectories conditioned on state sequences sampled from the MaxEnt policy. Quantitative and qualitative evaluation on the publicly available Stanford drone and NuScenes datasets shows that our model generates trajectories that are diverse, representing the multimodal predictive distribution, and precise, conforming to the underlying scene structure over long prediction horizons.



rate research

Read More

We propose a Deep RObust Goal-Oriented trajectory prediction Network (DROGON) for accurate vehicle trajectory prediction by considering behavioral intentions of vehicles in traffic scenes. Our main insight is that the behavior (i.e., motion) of drivers can be reasoned from their high level possible goals (i.e., intention) on the road. To succeed in such behavior reasoning, we build a conditional prediction model to forecast goal-oriented trajectories with the following stages: (i) relational inference where we encode relational interactions of vehicles using the perceptual context; (ii) intention estimation to compute the probability distributions of intentional goals based on the inferred relations; and (iii) behavior reasoning where we reason about the behaviors of vehicles as trajectories conditioned on the intentions. To this end, we extend the proposed framework to the pedestrian trajectory prediction task, showing the potential applicability toward general trajectory prediction.
Accurately predicting the future motion of surrounding vehicles requires reasoning about the inherent uncertainty in driving behavior. This uncertainty can be loosely decoupled into lateral (e.g., keeping lane, turning) and longitudinal (e.g., accelerating, braking). We present a novel method that combines learned discrete policy rollouts with a focused decoder on subsets of the lane graph. The policy rollouts explore different goals given current observations, ensuring that the model captures lateral variability. Longitudinal variability is captured by our latent variable model decoder that is conditioned on various subsets of the lane graph. Our model achieves state-of-the-art performance on the nuScenes motion prediction dataset, and qualitatively demonstrates excellent scene compliance. Detailed ablations highlight the importance of the policy rollouts and the decoder architecture.
Navigation tasks often cannot be defined in terms of a target, either because global position information is unavailable or unreliable or because target location is not explicitly known a priori. This task is then often defined indirectly as a source seeking problem in which the autonomous agent navigates so as to minimize the convex potential induced by a source while avoiding obstacles. This work addresses this problem when only scalar measurements of the potential are available, i.e., without gradient information. To do so, it construct an artificial potential over which an exact gradient dynamics would generate a collision-free trajectory to the target in a world with convex obstacles. Then, leveraging extremum seeking control loops, it minimizes this artificial potential to navigate smoothly to the source location. We prove that the proposed solution not only finds the source, but does so while avoiding any obstacle. Numerical results with velocity-actuated particles, simulations with an omni-directional robot in ROS+Gazebo, and a robot-in-the-loop experiment are used to illustrate the performance of this approach.
Predicting the trajectories of surrounding agents is an essential ability for autonomous vehicles navigating through complex traffic scenes. The future trajectories of agents can be inferred using two important cues: the locations and past motion of agents, and the static scene structure. Due to the high variability in scene structure and agent configurations, prior work has employed the attention mechanism, applied separately to the scene and agent configuration to learn the most salient parts of both cues. However, the two cues are tightly linked. The agent configuration can inform what part of the scene is most relevant to prediction. The static scene in turn can help determine the relative influence of agents on each others motion. Moreover, the distribution of future trajectories is multimodal, with modes corresponding to the agents intent. The agents intent also informs what part of the scene and agent configuration is relevant to prediction. We thus propose a novel approach applying multi-head attention by considering a joint representation of the static scene and surrounding agents. We use each attention head to generate a distinct future trajectory to address multimodality of future trajectories. Our model achieves state of the art results on the nuScenes prediction benchmark and generates diverse future trajectories compliant with scene structure and agent configuration.
High-speed trajectory planning through unknown environments requires algorithmic techniques that enable fast reaction times while maintaining safety as new information about the operating environment is obtained. The requirement of computational tractability typically leads to optimization problems that do not include the obstacle constraints (collision checks are done on the solutions) or use a convex decomposition of the free space and then impose an ad-hoc time allocation scheme for each interval of the trajectory. Moreover, safety guarantees are usually obtained by having a local planner that plans a trajectory with a final stop condition in the free-known space. However, these two decisions typically lead to slow and conservative trajectories. We propose FASTER (Fast and Safe Trajectory Planner) to overcome these issues. FASTER obtains high-speed trajectories by enabling the local planner to optimize in both the free-known and unknown spaces. Safety guarantees are ensured by always having a feasible, safe back-up trajectory in the free-known space at the start of each replanning step. Furthermore, we present a Mixed Integer Quadratic Program formulation in which the solver can choose the trajectory interval allocation, and where a time allocation heuristic is computed efficiently using the result of the previous replanning iteration. This proposed algorithm is tested extensively both in simulation and in real hardware, showing agile flights in unknown cluttered environments with velocities up to 3.6 m/s.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا