No Arabic abstract
Wave propagation problems have many applications in physics and engineering, and the stochastic effects are important in accurately modeling them due to the uncertainty of the media. This paper considers and analyzes a fully discrete finite element method for a class of nonlinear stochastic wave equations, where the diffusion term is globally Lipschitz continuous while the drift term is only assumed to satisfy weaker conditions as in [11]. The novelties of this paper are threefold. First, the error estimates cannot not be directly obtained if the numerical scheme in primal form is used. The numerical scheme in mixed form is introduced and several H{o}lder continuity results of the strong solution are proved, which are used to establish the error estimates in both $L^2$ norm and energy norms. Second, two types of discretization of the nonlinear term are proposed to establish the $L^2$ stability and energy stability results of the discrete solutions. These two types of discretization and proper test functions are designed to overcome the challenges arising from the stochastic scaling in time issues and the nonlinear interaction. These stability results play key roles in proving the probability of the set on which the error estimates hold approaches one. Third, higher order moment stability results of the discrete solutions are proved based on an energy argument and the underlying energy decaying property of the method. Numerical experiments are also presented to show the stability results of the discrete solutions and the convergence rates in various norms.
In this paper, we focus on constructing numerical schemes preserving the averaged energy evolution law for nonlinear stochastic wave equations driven by multiplicative noise. We first apply the compact finite difference method and the interior penalty discontinuous Galerkin finite element method to discretize space variable and present two semi-discrete schemes, respectively. Then we make use of the discrete gradient method and the Pade approximation to propose efficient fully-discrete schemes. These semi-discrete and fully-discrete schemes are proved to preserve the discrete averaged energy evolution law. In particular, we also prove that the proposed fully-discrete schemes exactly inherit the averaged energy evolution law almost surely if the considered model is driven by additive noise. Numerical experiments are given to confirm theoretical findings.
In this paper, we study an adaptive finite element method for a class of a nonlinear eigenvalue problems that may be of nonconvex energy functional and consider its applications to quantum chemistry. We prove the convergence of adaptive finite element approximations and present several numerical examples of micro-structure of matter calculations that support our theory.
We consider the null controllability problem for the wave equation, and analyse a stabilized finite element method formulated on a global, unstructured spacetime mesh. We prove error estimates for the approximate control given by the computational method. The proofs are based on the regularity properties of the control given by the Hilbert Uniqueness Method, together with the stability properties of the numerical scheme. Numerical experiments illustrate the results.
We establish a general theory of optimal strong error estimation for numerical approximations of a second-order parabolic stochastic partial differential equation with monotone drift driven by a multiplicative infinite-dimensional Wiener process. The equation is spatially discretized by Galerkin methods and temporally discretized by drift-implicit Euler and Milstein schemes. By the monotone and Lyapunov assumptions, we use both the variational and semigroup approaches to derive a spatial Sobolev regularity under the $L_omega^p L_t^infty dot H^{1+gamma}$-norm and a temporal Holder regularity under the $L_omega^p L_x^2$-norm for the solution of the proposed equation with an $dot H^{1+gamma}$-valued initial datum for $gammain [0,1]$. Then we make full use of the monotonicity of the equation and tools from stochastic calculus to derive the sharp strong convergence rates $O(h^{1+gamma}+tau^{1/2})$ and $O(h^{1+gamma}+tau^{(1+gamma)/2})$ for the Galerkin-based Euler and Milstein schemes, respectively.
We analyze the qualitative properties and the order of convergence of a splitting scheme for a class of nonlinear stochastic Schrodinger equations driven by additive It^o noise. The class of nonlinearities of interest includes nonlocal interaction cubic nonlinearities. We show that the numerical solution is symplectic and preserves the expected mass for all times. On top of that, for the convergence analysis, some exponential moment bounds for the exact and numerical solutions are proved. This enables us to provide strong orders of convergence as well as orders of convergence in probability and almost surely. Finally, extensive numerical experiments illustrate the performance of the proposed numerical scheme.