Do you want to publish a course? Click here

Dynamic Connectivity in Disk Graphs

77   0   0.0 ( 0 )
 Added by Katharina Klost
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Let $S$ be a set of $n$ sites, each associated with a point in $mathbb{R}^2$ and a radius $r_s$ and let $mathcal{D}(S)$ be the disk graph on $S$. We consider the problem of designing data structures that maintain the connectivity structure of $mathcal{D}(S)$ while allowing the insertion and deletion of sites. For unit disk graphs we describe a data structure that has $O(log^2n)$ amortized update time and $O((log n)/(loglog n))$ amortized query time. For disk graphs where the ratio $Psi$ between the largest and smallest radius is bounded, we consider the decremental and the incremental case separately, in addition to the fully dynamic case. In the fully dynamic case we achieve amortized $O(Psi lambda_6(log n) log^{9}n)$ update time and $O(log n)$ query time, where $lambda_s(n)$ is the maximum length of a Davenport-Schinzel sequence of order $s$ on $n$ symbols. This improves the update time of the currently best known data structure by a factor of $Psi$ at the cost of an additional $O(log log n)$ factor in the query time. In the incremental case we manage to achieve a logarithmic dependency on $Psi$ with a data structure with $O(alpha(n))$ query and $O(logPsi lambda_6(log n) log^{9}n)$ update time. For the decremental setting we first develop a new dynamic data structure that allows us to maintain two sets $B$ and $P$ of disks, such than at a deletion of a disk from $B$ we can efficiently report all disks in $P$ that no longer intersect any disk of $B$. Having this data structure at hand, we get decremental data structures with an amortized query time of $O((log n)/(log log n))$ supporting $m$ deletions in $O((nlog^{5}n + m log^{9}n) lambda_6(log n) + nlogPsilog^4n)$ overall time for bounded radius ratio $Psi$ and $O(( nlog^{6} n + m log^{10}n) lambda_6(log n))$ for general disk graphs.



rate research

Read More

Let $Vsubsetmathbb{R}^2$ be a set of $n$ sites in the plane. The unit disk graph $DG(V)$ of $V$ is the graph with vertex set $V$ in which two sites $v$ and $w$ are adjacent if and only if their Euclidean distance is at most $1$. We develop a compact routing scheme for $DG(V)$. The routing scheme preprocesses $DG(V)$ by assigning a label $l(v)$ to every site $v$ in $V$. After that, for any two sites $s$ and $t$, the scheme must be able to route a packet from $s$ to $t$ as follows: given the label of a current vertex $r$ (initially, $r=s$) and the label of the target vertex $t$, the scheme determines a neighbor $r$ of $r$. Then, the packet is forwarded to $r$, and the process continues until the packet reaches its desired target $t$. The resulting path between the source $s$ and the target $t$ is called the routing path of $s$ and $t$. The stretch of the routing scheme is the maximum ratio of the total Euclidean length of the routing path and of the shortest path in $DG(V)$, between any two sites $s, t in V$. We show that for any given $varepsilon>0$, we can construct a routing scheme for $DG(V)$ with diameter $D$ that achieves stretch $1+varepsilon$ and label size $O(log Dlog^3n/loglog n)$ (the constant in the $O$-Notation depends on $varepsilon$). In the past, several routing schemes for unit disk graphs have been proposed. Our scheme is the first one to achieve poly-logarithmic label size and arbitrarily small stretch without storing any additional information in the packet.
75 - Haitao Wang , Yiming Zhao 2021
Given a set P of n points in the plane, a unit-disk graph G_{r}(P) with respect to a radius r is an undirected graph whose vertex set is P such that an edge connects two points p, q in P if the Euclidean distance between p and q is at most r. The length of any path in G_r(P) is the number of edges of the path. Given a value lambda>0 and two points s and t of P, we consider the following reverse shortest path problem: finding the smallest r such that the shortest path length between s and t in G_r(P) is at most lambda. It was known previously that the problem can be solved in O(n^{4/3} log^3 n) time. In this paper, we present an algorithm of O(lfloor lambda rfloor cdot n log n) time and another algorithm of O(n^{5/4} log^2 n) time.
Let $S subset mathbb{R}^2$ be a set of $n$ sites, where each $s in S$ has an associated radius $r_s > 0$. The disk graph $D(S)$ is the undirected graph with vertex set $S$ and an undirected edge between two sites $s, t in S$ if and only if $|st| leq r_s + r_t$, i.e., if the disks with centers $s$ and $t$ and respective radii $r_s$ and $r_t$ intersect. Disk graphs are used to model sensor networks. Similarly, the transmission graph $T(S)$ is the directed graph with vertex set $S$ and a directed edge from a site $s$ to a site $t$ if and only if $|st| leq r_s$, i.e., if $t$ lies in the disk with center $s$ and radius $r_s$. We provide algorithms for detecting (directed) triangles and, more generally, computing the length of a shortest cycle (the girth) in $D(S)$ and in $T(S)$. These problems are notoriously hard in general, but better solutions exist for special graph classes such as planar graphs. We obtain similarly efficient results for disk graphs and for transmission graphs. More precisely, we show that a shortest (Euclidean) triangle in $D(S)$ and in $T(S)$ can be found in $O(n log n)$ expected time, and that the (weighted) girth of $D(S)$ can be found in $O(n log n)$ expected time. For this, we develop new tools for batched range searching that may be of independent interest.
Resolving an open question from 2006, we prove the existence of light-weight bounded-degree spanners for unit ball graphs in the metrics of bounded doubling dimension, and we design a simple $mathcal{O}(log^*n)$-round distributed algorithm that given a unit ball graph $G$ with $n$ vertices and a positive constant $epsilon < 1$ finds a $(1+epsilon)$-spanner with constant bounds on its maximum degree and its lightness using only 2-hop neighborhood information. This immediately improves the algorithm of Damian, Pandit, and Pemmaraju which runs in $mathcal{O}(log^*n)$ rounds but has a $mathcal{O}(log Delta)$ bound on its lightness, where $Delta$ is the ratio of the length of the longest edge in $G$ to the length of the shortest edge. We further study the problem in the two dimensional Euclidean plane and we provide a construction with similar properties that has a constant average number of edge intersection per node. This is the first distributed low-intersection topology control algorithm to the best of our knowledge. Our distributed algorithms rely on the maximal independent set algorithm of Schneider and Wattenhofer that runs in $mathcal{O}(log^*n)$ rounds of communication. If a maximal independent set is known beforehand, our algorithms run in constant number of rounds.
We study the complexity of Maximum Clique in intersection graphs of convex objects in the plane. On the algorithmic side, we extend the polynomial-time algorithm for unit disks [Clark 90, Raghavan and Spinrad 03] to translates of any fixed convex set. We also generalize the efficient polynomial-time approximation scheme (EPTAS) and subexponential algorithm for disks [Bonnet et al. 18, Bonamy et al. 18] to homothets of a fixed centrally symmetric convex set. The main open question on that topic is the complexity of Maximum Clique in disk graphs. It is not known whether this problem is NP-hard. We observe that, so far, all the hardness proofs for Maximum Clique in intersection graph classes $mathcal I$ follow the same road. They show that, for every graph $G$ of a large-enough class $mathcal C$, the complement of an even subdivision of $G$ belongs to the intersection class $mathcal I$. Then they conclude invoking the hardness of Maximum Independent Set on the class $mathcal C$, and the fact that the even subdivision preserves that hardness. However there is a strong evidence that this approach cannot work for disk graphs [Bonnet et al. 18]. We suggest a new approach, based on a problem that we dub Max Interval Permutation Avoidance, which we prove unlikely to have a subexponential-time approximation scheme. We transfer that hardness to Maximum Clique in intersection graphs of objects which can be either half-planes (or unit disks) or axis-parallel rectangles. That problem is not amenable to the previous approach. We hope that a scaled down (merely NP-hard) variant of Max Interval Permutation Avoidance could help making progress on the disk case, for instance by showing the NP-hardness for (convex) pseudo-disks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا