No Arabic abstract
As a new type of e-commerce platform developed in recent years, local consumer service platform provides users with software to consume service to the nearby store or to the home, such as Groupon and Koubei. Different from other common e-commerce platforms, the behavior of users on the local consumer service platform is closely related to their real-time local context information. Therefore, building a context-aware user behavior prediction system is able to provide both merchants and users better service in local consumer service platforms. However, most of the previous work just treats the contextual information as an ordinary feature into the prediction model to obtain the prediction list under a specific context, which ignores the fact that the interest of a user in different contexts is often significantly different. Hence, in this paper, we propose a context-aware heterogeneous graph attention network (CHGAT) to dynamically generate the representation of the user and to estimate the probability for future behavior. Specifically, we first construct the meta-path based heterogeneous graphs with the historical behaviors from multiple sources and comprehend heterogeneous vertices in the graph with a novel unified knowledge representing approach. Next, a multi-level attention mechanism is introduced for context-aware aggregation with graph vertices, which contains the vertex-level attention network and the path-level attention network. Both of them aim to capture the semantic correlation between information contained in the graph and the outside real-time contextual information in the search system. Then the model proposed in this paper aggregates specific graphs with their corresponding context features and obtains the representation of user interest under a specific context and input it into the prediction network to finally obtain the predicted probability of user behavior.
Context information in search sessions has proven to be useful for capturing user search intent. Existing studies explored user behavior sequences in sessions in different ways to enhance query suggestion or document ranking. However, a user behavior sequence has often been viewed as a definite and exact signal reflecting a users behavior. In reality, it is highly variable: users queries for the same intent can vary, and different documents can be clicked. To learn a more robust representation of the user behavior sequence, we propose a method based on contrastive learning, which takes into account the possible variations in users behavior sequences. Specifically, we propose three data augmentation strategies to generate similar variants of user behavior sequences and contrast them with other sequences. In so doing, the model is forced to be more robust regarding the possible variations. The optimized sequence representation is incorporated into document ranking. Experiments on two real query log datasets show that our proposed model outperforms the state-of-the-art methods significantly, which demonstrates the effectiveness of our method for context-aware document ranking.
For better user satisfaction and business effectiveness, more and more attention has been paid to the sequence-based recommendation system, which is used to infer the evolution of users dynamic preferences, and recent studies have noticed that the evolution of users preferences can be better understood from the implicit and explicit feedback sequences. However, most of the existing recommendation techniques do not consider the noise contained in implicit feedback, which will lead to the biased representation of user interest and a suboptimal recommendation performance. Meanwhile, the existing methods utilize item sequence for capturing the evolution of user interest. The performance of these methods is limited by the length of the sequence, and can not effectively model the long-term interest in a long period of time. Based on this observation, we propose a novel CTR model named denoising user-aware memory network (DUMN). Specifically, the framework: (i) proposes a feature purification module based on orthogonal mapping, which use the representation of explicit feedback to purify the representation of implicit feedback, and effectively denoise the implicit feedback; (ii) designs a user memory network to model the long-term interests in a fine-grained way by improving the memory network, which is ignored by the existing methods; and (iii) develops a preference-aware interactive representation component to fuse the long-term and short-term interests of users based on gating to understand the evolution of unbiased preferences of users. Extensive experiments on two real e-commerce user behavior datasets show that DUMN has a significant improvement over the state-of-the-art baselines. The code of DUMN model has been uploaded as an additional material.
Native ad is a popular type of online advertisement which has similar forms with the native content displayed on websites. Native ad CTR prediction is useful for improving user experience and platform revenue. However, it is challenging due to the lack of explicit user intent, and users behaviors on the platform with native ads may not be sufficient to infer their interest in ads. Fortunately, user behaviors exist on many online platforms and they can provide complementary information for user interest mining. Thus, leveraging multi-platform user behaviors is useful for native ad CTR prediction. However, user behaviors are highly privacy-sensitive and the behavior data on different platforms cannot be directly aggregated due to user privacy concerns and data protection regulations like GDPR. Existing CTR prediction methods usually require centralized storage of user behavior data for user modeling and cannot be directly applied to the CTR prediction task with multi-platform user behaviors. In this paper, we propose a federated native ad CTR prediction method named FedCTR, which can learn user interest representations from their behaviors on multiple platforms in a privacy-preserving way. On each platform a local user model is used to learn user embeddings from the local user behaviors on that platform. The local user embeddings from different platforms are uploaded to a server for aggregation, and the aggregated user embeddings are sent to the ad platform for CTR prediction. Besides, we apply LDP and DP techniques to the local and aggregated user embeddings respectively for better privacy protection. Moreover, we propose a federated framework for model training with distributed models and user behaviors. Extensive experiments on real-world dataset show that FedCTR can effectively leverage multi-platform user behaviors for native ad CTR prediction in a privacy-preserving manner.
Fake news, false or misleading information presented as news, has a great impact on many aspects of society, such as politics and healthcare. To handle this emerging problem, many fake news detection methods have been proposed, applying Natural Language Processing (NLP) techniques on the article text. Considering that even people cannot easily distinguish fake news by news content, these text-based solutions are insufficient. To further improve fake news detection, researchers suggested graph-based solutions, utilizing the social context information such as user engagement or publishers information. However, existing graph-based methods still suffer from the following four major drawbacks: 1) expensive computational cost due to a large number of user nodes in the graph, 2) the error in sub-tasks, such as textual encoding or stance detection, 3) loss of rich social context due to homogeneous representation of news graphs, and 4) the absence of temporal information utilization. In order to overcome the aforementioned issues, we propose a novel social context aware fake news detection method, Hetero-SCAN, based on a heterogeneous graph neural network. Hetero-SCAN learns the news representation from the heterogeneous graph of news in an end-to-end manner. We demonstrate that Hetero-SCAN yields significant improvement over state-of-the-art text-based and graph-based fake news detection methods in terms of performance and efficiency.
In the Click-Through Rate (CTR) prediction scenario, users sequential behaviors are well utilized to capture the user interest in the recent literature. However, despite being extensively studied, these sequential methods still suffer from three limitations. First, existing methods mostly utilize attention on the behavior of users, which is not always suitable for CTR prediction, because users often click on new products that are irrelevant to any historical behaviors. Second, in the real scenario, there exist numerous users that have operations a long time ago, but turn relatively inactive in recent times. Thus, it is hard to precisely capture users current preferences through early behaviors. Third, multiple representations of users historical behaviors in different feature subspaces are largely ignored. To remedy these issues, we propose a Multi-Interactive Attention Network (MIAN) to comprehensively extract the latent relationship among all kinds of fine-grained features (e.g., gender, age and occupation in user-profile). Specifically, MIAN contains a Multi-Interactive Layer (MIL) that integrates three local interaction modules to capture multiple representations of user preference through sequential behaviors and simultaneously utilize the fine-grained user-specific as well as context information. In addition, we design a Global Interaction Module (GIM) to learn the high-order interactions and balance the different impacts of multiple features. Finally, Offline experiment results from three datasets, together with an Online A/B test in a large-scale recommendation system, demonstrate the effectiveness of our proposed approach.