Do you want to publish a course? Click here

Establishing the X-ray Source Detection Strategy for eROSITA with Simulations

96   0   0.0 ( 0 )
 Added by Teng Liu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context: The eROSITA X-ray telescope onboard the Spectrum-Roentgen-Gamma (SRG) satellite has started to observe new X-ray sources over the full sky at an unprecedented rate. Understanding the selection function of the source detection is important to the subsequent scientific analysis of the eROSITA catalogs. Aims: Through simulations, we test and optimize the eROSITA source detection procedures, and characterize the detected catalog quantitatively. Methods: Taking the eROSITA Final Equatorial-Depth Survey (eFEDS) as an example, we run extensive photon event simulations using our best knowledge of the instrument characteristics, the background spectrum, and the population of astronomical X-ray sources. We analyze the source detection results based on the origin of each photon. Results. The source detection procedure is optimized according to the source detection efficiency. We choose a two-pronged strategy to build the eFEDS X-ray catalogs, creating a main catalog using only the most sensitive band (0.2-2.3 keV) and an independent hard-band selected catalog using multi-band detection in a range up to 5 keV. From the mock catalogs (available with this paper), we measure the catalog completeness and purity, which can be used in both choosing the sample selection thresholds and in further studies of AGN and cluster demography.

rate research

Read More

High-energy irradiation is a driver for atmospheric evaporation and mass loss in exoplanets. This work is based on data from eROSITA, the soft X-ray instrument aboard SRG (Spectrum Roentgen Gamma) mission, as well as archival data from other missions, we aim to characterise the high-energy environment of known exoplanets and estimate their mass loss rates. We use X-ray source catalogues from eROSITA, XMM-Newton, Chandra and ROSAT to derive X-ray luminosities of exoplanet host stars in the 0.2-2 keV energy band with an underlying coronal, i.e. optically thin thermal spectrum. We present a catalogue of stellar X-ray and EUV luminosities, exoplanetary X-ray and EUV irradiation fluxes and estimated mass loss rates for a total of 287 exoplanets, 96 among them being characterised for the first time from new eROSITA detections. We identify 14 first time X-ray detections of transiting exoplanets that are subject to irradiation levels known to cause observable evaporation signatures in other exoplanets, which makes them suitable targets for follow-up observations.
With the launch of eROSITA (extended Roentgen Survey with an Imaging Telescope Array), successfully occurred on 2019 July 13, we are facing the challenge of computing reliable photometric redshifts for 3 million of active galactic nuclei (AGNs) over the entire sky, having available only patchy and inhomogeneous ancillary data. While we have a good understanding of the photo-z quality obtainable for AGN using spectral energy distribution (SED)-fitting technique, we tested the capability of machine learning (ML), usually reliable in computing photo-z for QSO in wide and shallow areas with rich spectroscopic samples. Using MLPQNA as example of ML, we computed photo-z for the X-ray-selected sources in Stripe 82X, using the publicly available photometric and spectroscopic catalogues. Stripe 82X is at least as deep as eROSITA will be and wide enough to include also rare and bright AGNs. In addition, the availability of ancillary data mimics what can be available in the whole sky. We found that when optical, and near- and mid-infrared data are available, ML and SED fitting perform comparably well in terms of overall accuracy, realistic redshift probability density functions, and fraction of outliers, although they are not the same for the two methods. The results could further improve if the photometry available is accurate and including morphological information. Assuming that we can gather sufficient spectroscopy to build a representative training sample, with the current photometry coverage we can obtain reliable photo-z for a large fraction of sources in the Southern hemisphere well before the spectroscopic follow-up, thus timely enabling the eROSITA science return. The photo-z catalogue is released here.
At low redshifts, the observed baryonic density falls far short of the total number of baryons predicted. Cosmological simulations suggest that these baryons reside in filamentary gas structures, known as the warm-hot intergalactic medium (WHIM). As a result of the high temperatures of these filaments, the matter is highly ionised such that it absorbs and emits far-UV and soft X-ray photons. Athena, the proposed European Space Agency X-ray observatory, aims to detect the `missing baryons in the WHIM up to redshifts of $z=1$ through absorption in active galactic nuclei and gamma-ray burst afterglow spectra, allowing for the study of the evolution of these large-scale structures of the Universe. This work simulates WHIM filaments in the spectra of GRB X-ray afterglows with Athena using the SImulation of X-ray TElescopes (SIXTE) framework. We investigate the feasibility of their detection with the X-IFU instrument, through O VII ($E=573$ eV) and O VIII ($E=674$ eV) absorption features, for a range of equivalent widths imprinted onto GRB afterglow spectra of observed starting fluxes ranging between $10^{-12}$ and $10^{-10}$ erg cm$^{-2}$ s$^{-1}$, in the 0.3-10 keV energy band. The analyses of X-IFU spectra by blind line search show that Athena will be able to detect O VII-O VIII absorption pairs with EW$_mathrm{O VII} > 0.13$ eV and EW$_mathrm{O VIII} > 0.09$ eV for afterglows with $F>2 times 10^{-11}$ erg cm$^{-2}$ s$^{-1}$. This allows for the detection of $approx$ 45-137 O VII-O VIII absorbers during the four-year mission lifetime. The work shows that to obtain an O VII-O VIII detection of high statistical significance, the local hydrogen column density should be limited at $N_mathrm{H}<8 times 10^{20}$ cm$^{-2}$.
One of the largest uncertainties in the Point Source (PS) studies, at Fermi-LAT energies, is the uncertainty in the diffuse background. In general there are two approaches for PS analysis: background-dependent methods, that include modeling of the diffuse background, and background-independent methods. In this work we study PGWave, which is one of the background-independent methods, based on wavelet filtering to find significant clusters of gamma rays. PGWave is already used in the Fermi-LAT catalog pipeline for finding candidate sources. We test PGWave, not only for source detection, but especially to estimate the flux without the need of a background model. We use Monte Carlo (MC) simulation to study the accuracy of PS detection and estimation of the flux. We present preliminary results of these MC studies.
The ATHENA X-ray Observatory-IXO is a planned multinational orbiting X-ray observatory with a focal length of 11.5m. ATHENA aims to perform pointed observations in an energy range from 0.1 keV to 15 keV with high sensitivity. For high spatial and timing resolution imaging and spectroscopic observations the 640x640 pixel^2 large DePFET-technology based Wide field Imager (WFI) focal plane detector, providing a field of view of 18 arcsec will be the main detector. Based on the actual mechanics, thermal and shielding design we present estimates for the WFI cosmic ray induced background obtained by the use of Monte-Carlo simulations and possible background reduction measures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا