Do you want to publish a course? Click here

Full superconducting gap and type-I to type-II superconductivity transition in single crystalline NbGe2

66   0   0.0 ( 0 )
 Added by Xin Lu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a mechanical point-contact spectroscopy study on the single crystalline NbGe$_2$ with a superconducting transition temperature $Trm_c$ = 2.0 - 2.1 K. The differential conductance curves at 0.3 K can be well fitted by a single gap s-wave Blonder-Tinkham-Klapwijk model and the temperature dependent gap follows a standard Bardeen-Cooper-Schrieffer behavior, yielding $Delta_0 sim$ 0.32 meV and 2$Delta_0$/$krm_{B}$$Trm_{c}$ = 3.62 in the weak coupling limit. In magnetic field, the superconducting gap at 0.3 K keeps constant up to $H_{c1}sim$150 Oe and gradually decreases until $H_{c2}sim$350 Oe, indicating NbGe$_2$ going through a transition from type-I to type-II (possible type-II/1) superconductor at low temperature.



rate research

Read More

The type II Dirac semimetal PdTe$_2$ is unique in the family of topological parent materials because it displays a superconducting ground state below 1.7 K. Despite wide speculations on the possibility of an unconventional topological superconducting phase, tunneling and heat capacity measurements revealed that the superconducting phase of PdTe$_2$ follows predictions of the microscopic theory of Bardeen, Cooper and Shriefer (BCS) for conventional superconductors. The superconducting phase in PdTe$_2$ is further interesting because it also displays properties that are characteristics of type-I superconductors and are generally unexpected for binary compounds. Here, from scanning tunneling spectroscopic measurements we show that the surface of PdTe$_2$ displays intrinsic electronic inhomegenities in the normal state which leads to a mixed type I and type II superconducting behaviour along with a spatial distribution of critical fields in the superconducting state. Understanding of the origin of such inhomogeneities may be important for understanding the topological properties of PdTe$_2$ in the normal state.
Interactions between vortices in thin superconducting films are investigated in the crossover (intertype) regime between superconductivity types I and II. We consider two main factors responsible for this crossover: a) changes in the material characteristics of the film and b) variations of the film thickness controlling the effect of the stray magnetic fields outside superconducting sample. The analysis is done within the formalism that combines the perturbation expansion of the microscopic equations to one order beyond the Ginzburg-Landau theory with the leading contribution of the stray fields. It is shown that the latter gives rise to qualitatively different spatial profile and temperature dependence of the vortex interaction potential, as compared to bulk vortex interactions. The resulting interaction is long-range repulsive while exhibiting complex competition of attraction and repulsion at small and intermediate separations of vortices. This explains the appearance of vortex chains reported earlier for superconducting films.
The type-II Dirac semimetal PdTe2 was recently reported to be a type-I superconductor with a superconducting transition temperature Tc = 1.65 K. However, the recent results from tunneling and point contact spectroscopy suggested the unusual state of a mixture of type-I and type-II superconductivity. These contradictory results mean that there is no clear picture of the superconducting phase diagram and warrants a detailed investigation of the superconducting phase. We report here the muon spin rotation and relaxation ($mu$SR) measurements on the superconducting state of the topological Dirac semimetal PdTe2. From $mu$SR measurements, we find that PdTe2 exhibits mixed type-I/type-II superconductivity. Using these results a phase diagram has been determined. In contrast to previous results where local type-II superconductivity persists up to Hc2 = 600 G, we observed that bulk superconductivity is destroyed above 225 G.
109 - Jifeng Wu , Bin Liu , Yanwei Cui 2018
We report the discovery of superconductivity in the ternary aluminide Nb$_{5}$Sn$_{2}$Al, which crystallizes in the W$_{5}$Si$_{3}$-type structure with one-dimensional Nb chains along the $c$-axis. It is found that the compound has a multiband nature and becomes a weakly coupled, type-II superconductor below 2.0 K. The bulk nature of superconductivity is confirmed by the specific heat jump, whose temperature dependence shows apparent deviation from a single isotropic gap behavior. The lower and upper critical fields are estimated to be 2.0 mT and 0.3 T, respectively. From these values, we derive the penetration depth, coherence length and Ginzburg-Landau parameter to be 516 nm, 32.8 nm and 15.6, respectively. By contrast, the isostructural compound Ti$_{5}$Sn$_{2}$Al dose not superconduct above 0.5 K. A comparison of these results with other W$_{5}$Si$_{3}$-type superconductors suggests that $T_{rm c}$ of these compounds correlates with the average number of valence electrons per atom.
Superconductors usually display either type-I or type-II superconductivity and the coexistence of these two types in the same material, for example at different temperatures is rare in nature. We the employed muon spin rotation (muSR) technique to unveil the superconducting phase diagram of the dodecaboride ZrB12 and obtained clear evidence of both type-I and type-II characteristics. Most importantly, we found a region showing unusual behavior where the usually mutually exclusive muSR signatures of type-I and type-II superconductivity coexist. We reproduced that behavior in theoretical modeling that required taking into account multiple bands and multiple coherence lengths, which suggests that material has one coherence length larger and another smaller than the magnetic field penetration length (the type-1.5 regime). At stronger fields, a footprint of the type-II mixed state showing square flux-line lattice was also obtained using neutron diffraction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا