Do you want to publish a course? Click here

Magnetization dependent tunneling conductance of ferromagnetic barriers

109   0   0.0 ( 0 )
 Added by Zhe Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent experiments on van der Waals antiferrmagnets such as CrI3, CrCl3 and MnPS3 have shown that using atomically thin layers as tunnel barriers and measuring the temperature ($T$) and magnetic field ($H$) dependence of the conductance allows their magnetic phase diagram to be mapped. In contrast, barriers made of CrBr3 -- the sole van der Waals ferromagnet investigated in this way -- were found to exhibit small and featureless magnetoconductance, seemingly carrying little information about magnetism. Here we show that -- despite these early results -- the conductance of CrBr3 tunnel barriers does provide detailed information about the magnetic state of atomically thin CrBr3 crystals for $T$ both above and below the Curie temperature ($T_C = 32$ K). Our analysis establishes that the tunneling conductance depends on $H$ and $T$ exclusively through the magnetization $M(H,T)$, over the entire temperature range investigated (2-50 K). The phenomenon is reproduced in detail by the spin-dependent Fowler-Nordheim model for tunneling, and is a direct manifestation of the spin splitting of the CrBr3 conduction band. These findings demonstrate that the investigation of magnetism by tunneling conductance measurements is not limited to antiferromagnets, but can also be applied to ferromagnetic materials.



rate research

Read More

Mixed-dimensional magnetic heterostructures are intriguing, newly available platforms to explore quantum physics and its applications. Using state-of-the-art many-body perturbation theory, we predict the energy level alignment for a self-assembled monolayer of cobalt phthalocyanine (CoPc) molecules on magnetic VSe 2 monolayers. The predicted projected density of states on CoPc agrees with experimental scanning tunneling spectra. Consistent with experiment, we predict a shoulder in the unoccupied region of the spectra that is absent from mean-field calculations. Unlike the nearly spin-degenerate gas phase frontier molecular orbitals, the tunneling barriers at the interface are spin-dependent, a finding of interest for quantum information and spintronics applications. Both the experimentally observed shoulder and the predicted spin-dependent tunneling barriers originate from many-body interactions in the interface-hybridized states. Our results showcase the intricate many-body physics that governs the properties of these mixed-dimensional magnetic heterostructures, and suggests the possibility of manipulating the spin-dependent tunneling barriers through modifications of interface coupling.
184 - Cezary Sliwa , Tomasz Dietl 2014
The relationship between the modern and classical Landaus approach to carrier orbital magnetization is studied theoretically within the envelope function approximation, taking ferromagnetic (Ga,Mn)As as an example. It is shown that while the evaluation of hole magnetization within the modern theory does not require information on the band structure in a magnetic field, the number of basis wave functions must be much larger than in the Landau approach to achieve the same quantitative accuracy. A numerically efficient method is proposed, which takes advantages of these two theoretical schemes. The computed magnitude of orbital magnetization is in accord with experimental values obtained by x-ray magnetic circular dichroism in (III,Mn)V compounds. The direct effect of the magnetic field on the hole spectrum is studied too, and employed to interpret a dependence of the Coulomb blockade maxima on the magnetic field in a single electron transistor with a (Ga,Mn)As gate.
The magnetization characteristic in a permalloy thin strip is investigated by electrically measuring the anisotropic magnetoresistance and ferromagnetic resonance in in-plane and out-of-plane configurations. Our results indicate that the magnetization vector can rotate in the film plane as well as out of the film plane by changing the intensity of external magnetic field of certain direction. The magnetization characteristic can be explained by considering demagnetization and magnetic anisotropy. Our method can be used to obtain the demagnetization factor, saturated magnetic moment and the magnetic anisotropy.
The transport properties of magnetic tunnel junctions (MTJs) are very sensitive to interface modifications. In this work we investigate both experimentally and theoretically the effect of asymmetric barrier modifications on the bias dependence of tunneling magnetoresistance (TMR) in single crystal Fe/MgO-based MTJs with (i) one crystalline and one rough interface and (ii) with a monolayer of O deposited at the crystalline interface. In both cases we observe an asymmetric bias dependence of TMR and a reversal of its sign at large bias. We propose a general model to explain the bias dependence in these and similar systems reported earlier. The model predicts the existence of two distinct TMR regimes: (i) tunneling regime when the interface is modified with layers of a different insulator and (ii) resonant regime when thin metallic layers are inserted at the interface. We demonstrate that in the tunneling regime negative TMR is due to the high voltage which overcomes the exchange splitting in the electrodes, while the asymmetric bias dependence of TMR is due to the interface transmission probabilities. In the resonant regime inversion of TMR could happen at zero voltage depending on the alignment of the resonance levels with the Fermi surfaces of the electrodes. Moreover, the model predicts a regime in which TMR has different sign at positive and negative bias suggesting possibilities of combining memory with logic functions.
Single-molecule magnets facilitate the study of quantum tunneling of magnetization at the mesoscopic level. The spin-parity effect is among the fundamental predictions that have yet to be clearly observed. It is predicted that quantum tunneling is suppressed at zero transverse field if the total spin of the magnetic system is half-integer (Kramers degeneracy) but is allowed in integer spin systems. The Landau-Zener method is used to measure the tunnel splitting as a function of transverse field. Spin-parity dependent tunneling is established by comparing the transverse field dependence of the tunnel splitting of integer and half-integer spin systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا