Do you want to publish a course? Click here

Quantum Dynamics Interpretation of Black-box Optimization

30   0   0.0 ( 0 )
 Added by Peng Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In recent decades, with the emergence of numerous novel intelligent optimization algorithms, many optimization researchers have begun to look for a basic search mechanism for their schemes that provides a more essential explanation of their studies. This paper aims to study the basic mechanism of an algorithm for black-box optimization with quantum theory. To achieve this goal, the Schroedinger equation is employed to establish the relationship between the optimization problem and the quantum system, which makes it possible to study the dynamic search behaviors in the evolution process with quantum theory. Moreover, to explore the basic behavior of the optimization system, the optimization problem is assumed to be decomposed and approximated. Then, a multilevel approximation quantum dynamics model of the optimization algorithm is established, which provides a mathematical and physical framework for the analysis of the optimization algorithm. Correspondingly, the basic search behavior based on this model is derived, which is governed by quantum theory. Comparison experiments and analysis between different bare-bones algorithms confirm the existence of the quantum mechanic based basic search mechanism of the algorithm on black-box optimization.



rate research

Read More

The encoding of solutions in black-box optimization is a delicate, handcrafted balance between expressiveness and domain knowledge -- between exploring a wide variety of solutions, and ensuring that those solutions are useful. Our main insight is that this process can be automated by generating a dataset of high-performing solutions with a quality diversity algorithm (here, MAP-Elites), then learning a representation with a generative model (here, a Variational Autoencoder) from that dataset. Our second insight is that this representation can be used to scale quality diversity optimization to higher dimensions -- but only if we carefully mix solutions generated with the learned representation and those generated with traditional variation operators. We demonstrate these capabilities by learning an low-dimensional encoding for the inverse kinematics of a thousand joint planar arm. The results show that learned representations make it possible to solve high-dimensional problems with orders of magnitude fewer evaluations than the standard MAP-Elites, and that, once solved, the produced encoding can be used for rapid optimization of novel, but similar, tasks. The presented techniques not only scale up quality diversity algorithms to high dimensions, but show that black-box optimization encodings can be automatically learned, rather than hand designed.
191 - Ilya Loshchilov 2012
In this paper, we study the performance of IPOP-saACM-ES, recently proposed self-adaptive surrogate-assisted Covariance Matrix Adaptation Evolution Strategy. The algorithm was tested using restarts till a total number of function evaluations of $10^6D$ was reached, where $D$ is the dimension of the function search space. The experiments show that the surrogate model control allows IPOP-saACM-ES to be as robust as the original IPOP-aCMA-ES and outperforms the latter by a factor from 2 to 3 on 6 benchmark problems with moderate noise. On 15 out of 30 benchmark problems in dimension 20, IPOP-saACM-ES exceeds the records observed during BBOB-2009 and BBOB-2010.
201 - Ilya Loshchilov 2012
In this paper, we study the performance of IPOP-saACM-ES and BIPOP-saACM-ES, recently proposed self-adaptive surrogate-assisted Covariance Matrix Adaptation Evolution Strategies. Both algorithms were tested using restarts till a total number of function evaluations of $10^6D$ was reached, where $D$ is the dimension of the function search space. We compared surrogate-assisted algorithms with their surrogate-le
Characterizing the memory properties of the environment has become critical for the high-fidelity control of qubits and other advanced quantum systems. However, current non-Markovian tomography techniques are either limited to discrete superoperators, or they employ machine learning methods, neither of which provide physical insight into the dynamics of the quantum system. To circumvent this limitation, we design learning architectures that explicitly encode physical constraints like the properties of completely-positive trace-preserving maps in a differential form. This method preserves the versatility of the machine learning approach without sacrificing the efficiency and fidelity of traditional parameter estimation methods. Our approach provides the physical interpretability that machine learning and opaque superoperators lack. Moreover, it is aware of the underlying continuous dynamics typically disregarded by superoperator-based tomography. This paradigm paves the way to noise-aware optimal quantum control and opens a path to exploiting the bath as a control and error mitigation resource.
This paper introduces a multi-level (m-lev) mechanism into Evolution Strategies (ESs) in order to address a class of global optimization problems that could benefit from fine discretization of their decision variables. Such problems arise in engineering and scientific applications, which possess a multi-resolution control nature, and thus may be formulated either by means of low-resolution variants (providing coarser approximations with presumably lower accuracy for the general problem) or by high-resolution controls. A particular scientific application concerns practical Quantum Control (QC) problems, whose targeted optimal controls may be discretized to increasingly higher resolution, which in turn carries the potential to obtain better control yields. However, state-of-the-art derivative-free optimization heuristics for high-resolution formulations nominally call for an impractically large number of objective function calls. Therefore, an effective algorithmic treatment for such problems is needed. We introduce a framework with an automated scheme to facilitate guided-search over increasingly finer levels of control resolution for the optimization problem, whose on-the-fly learned parameters require careful adaptation. We instantiate the proposed m-lev self-adaptive ES framework by two specific strategies, namely the classical elitist single-child (1+1)-ES and the non-elitist multi-child derandomized $(mu_W,lambda)$-sep-CMA-ES. We first show that the approach is suitable by simulation-based optimization of QC systems which were heretofore viewed as too complex to address. We also present a laboratory proof-of-concept for the proposed approach on a basic experimental QC system objective.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا