Do you want to publish a course? Click here

Fluctuating ecological networks: a synthesis of maximum entropy approaches for pattern and perturbation detection

327   0   0.0 ( 0 )
 Added by Tancredi Caruso
 Publication date 2021
  fields Biology
and research's language is English




Ask ChatGPT about the research

Ecological networks such as plant-pollinator systems vary systematically in space and time. This variability includes fluctuations in global network properties such as total number and intensity of interactions in the network, but also in the local properties of individual nodes, such as the number and intensity of species-level interactions. Fluctuations of local properties can significantly affect higher-order network features, e.g. robustness and nestedness. These fluctuations should therefore be controlled for in applications that rely on null models, including pattern detection, perturbation experiments and network reconstruction from limited observations. By contrast, most randomization methods used by ecologists treat node-level local properties as hard constraints that cannot fluctuate. Here we synthesise a set of methods based on the statistical mechanics of networks, which we illustrate with some practical examples. We illustrate how this approach can be used by experimental ecologists to study the statistical significance of network patterns and the rewiring of networks under simulated perturbations. Modelling species heterogeneity, while allowing for local fluctuations around a theoretically grounded notion of structural equilibrium, will offer a new generation of models and experiments to understand the assembly and resilience of ecological networks.



rate research

Read More

The World Trade Web (WTW) is the network of international trade relationships among world countries. Characterizing both the local link weights (observed trade volumes) and the global network structure (large-scale topology) of the WTW via a single model is still an open issue. While the traditional Gravity Model (GM) successfully replicates the observed trade volumes by employing macroeconomic properties such as GDP and geographic distance, it, unfortunately, predicts a fully connected network, thus returning a completely unrealistic topology of the WTW. To overcome this problem, two different classes of models have been introduced in econometrics and statistical physics. Econometric approaches interpret the traditional GM as the expected value of a probability distribution that can be chosen arbitrarily and tested against alternative distributions. Statistical physics approaches construct maximum-entropy probability distributions of (weighted) graphs from a chosen set of measurable structural constraints and test distributions resulting from different constraints. Here we compare and integrate the two approaches by considering a class of maximum-entropy models that can incorporate macroeconomic properties used in standard econometric models. We find that the integrated approach achieves a better performance than the purely econometric one. These results suggest that the maximum-entropy construction can serve as a viable econometric framework wherein extensive and intensive margins can be separately controlled for, by combining topological constraints and dyadic macroeconomic variables.
Food-webs and other classes of ecological network motifs, are a means of describing feeding relationships between consumers and producers in an ecosystem. They have application across scales where they differ only in the underlying characteristics of the organisms and substrates describing the system. Mathematical modelling, using mechanistic approaches to describe the dynamic behaviour and properties of the system through sets of ordinary differential equations, has been used extensively in ecology. Models allow simulation of the dynamics of the various motifs and their numerical analysis provides a greater understanding of the interplay between the system components and their intrinsic properties. We have developed the MI-Sim software for use with MATLAB to allow a rigorous and rapid numerical analysis of several common ecological motifs. MI-Sim contains a series of the most commonly used motifs such as cooperation, competition and predation. It does not require detailed knowledge of mathematical analytical techniques and is offered as a single graphical user interface containing all input and output options. The tools available in the current version of MI-Sim include model simulation, steady- state existence and stability analysis, and basin of attraction analysis. The software includes seven ecological interaction motifs and seven growth function models. Unlike other system analysis tools, MI-Sim is designed as a simple and user-friendly tool specific to ecological population type models, allowing for rapid assessment of their dynamical and behavioural properties.
Recent years have seen the rise of convolutional neural network techniques in exemplar-based image synthesis. These methods often rely on the minimization of some variational formulation on the image space for which the minimizers are assumed to be the solutions of the synthesis problem. In this paper we investigate, both theoretically and experimentally, another framework to deal with this problem using an alternate sampling/minimization scheme. First, we use results from information geometry to assess that our method yields a probability measure which has maximum entropy under some constraints in expectation. Then, we turn to the analysis of our method and we show, using recent results from the Markov chain literature, that its error can be explicitly bounded with constants which depend polynomially in the dimension even in the non-convex setting. This includes the case where the constraints are defined via a differentiable neural network. Finally, we present an extensive experimental study of the model, including a comparison with state-of-the-art methods and an extension to style transfer.
A classic measure of ecological stability describes the tendency of a community to return to equilibrium after small perturbation. While many advances show how the network structure of these communities severely constrains such tendencies, few if any of these advances address one of the most fundamental properties of network structure: heterogeneity among nodes with different numbers of links. Here we systematically explore this property of degree heterogeneity and find that its effects on stability systematically vary with different types of interspecific interactions. Degree heterogeneity is always destabilizing in ecological networks with both competitive and mutualistic interactions while its effects on networks of predator-prey interactions such as food webs depend on prey contiguity, i.e., the extent to which the species consume an unbroken sequence of prey in community niche space. Increasing degree heterogeneity stabilizes food webs except those with the most contiguity. These findings help explain previously unexplained observations that food webs are highly but not completely contiguous and, more broadly, deepens our understanding of the stability of complex ecological networks with important implications for other types of dynamical systems.
Transients are fundamental to ecological systems with significant implications to management, conservation, and biological control. We uncover a type of transient synchronization behavior in spatial ecological networks whose local dynamics are of the chaotic, predator-prey type. In the parameter regime where there is phase synchronization among all the patches, complete synchronization (i.e., synchronization in both phase and amplitude) can arise in certain pairs of patches as determined by the network symmetry - henceforth the phenomenon of synchronization within synchronization. Distinct patterns of complete synchronization coexist but, due to intrinsic instability or noise, each pattern is a transient and there is random, intermittent switching among the patterns in the course of time evolution. The probability distribution of the transient time is found to follow an algebraic scaling law with a divergent average transient lifetime. Based on symmetry considerations, we develop a stability analysis to understand these phenomena. The general principle of symmetry can also be exploited to explain previously discovered, counterintuitive synchronization behaviors in ecological networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا