No Arabic abstract
In many complex systems, entities interact with each other through complicated patterns that embed different relationships, thus generating networks with multiple levels and/or multiple types of edges. When trying to improve our understanding of those complex networks, it is of paramount importance to explicitly take the multiple layers of connectivity into account in the analysis. In this paper, we focus on detecting community structures in multi-layer networks, i.e., detecting groups of well-connected nodes shared among the layers, a very popular task that poses a lot of interesting questions and challenges. Most of the available algorithms in this context either reduce multi-layer networks to a single-layer network or try to extend algorithms for single-layer networks by using consensus clustering. Those approaches have anyway been criticized lately. They indeed ignore the connections among the different layers, hence giving low accuracy. To overcome these issues, we propose new community detection methods based on tailored Louvain-like strategies that simultaneously handle the multiple layers. We consider the informative case, where all layers show a community structure, and the noisy case, where some layers only add noise to the system. We report experiments on both artificial and real-world networks showing the effectiveness of the proposed strategies.
There has been a surge of interest in community detection in homogeneous single-relational networks which contain only one type of nodes and edges. However, many real-world systems are naturally described as heterogeneous multi-relational networks which contain multiple types of nodes and edges. In this paper, we propose a new method for detecting communities in such networks. Our method is based on optimizing the composite modularity, which is a new modularity proposed for evaluating partitions of a heterogeneous multi-relational network into communities. Our method is parameter-free, scalable, and suitable for various networks with general structure. We demonstrate that it outperforms the state-of-the-art techniques in detecting pre-planted communities in synthetic networks. Applied to a real-world Digg network, it successfully detects meaningful communities.
Community structures are critical towards understanding not only the network topology but also how the network functions. However, how to evaluate the quality of detected community structures is still challenging and remains unsolved. The most widely used metric, normalized mutual information (NMI), was proved to have finite size effect, and its improved form relative normalized mutual information (rNMI) has reverse finite size effect. Corrected normalized mutual information (cNMI) was thus proposed and has neither finite size effect nor reverse finite size effect. However, in this paper we show that cNMI violates the so-called proportionality assumption. In addition, NMI-type metrics have the problem of ignoring importance of small communities. Finally, they cannot be used to evaluate a single community of interest. In this paper, we map the computed community labels to the ground-truth ones through integer linear programming, then use kappa index and F-score to evaluate the detected community structures. Experimental results demonstrate the advantages of our method.
We introduce a new paradigm that is important for community detection in the realm of network analysis. Networks contain a set of strong, dominant communities, which interfere with the detection of weak, natural community structure. When most of the members of the weak communities also belong to stronger communities, they are extremely hard to be uncovered. We call the weak communities the hidden community structure. We present a novel approach called HICODE (HIdden COmmunity DEtection) that identifies the hidden community structure as well as the dominant community structure. By weakening the strength of the dominant structure, one can uncover the hidden structure beneath. Likewise, by reducing the strength of the hidden structure, one can more accurately identify the dominant structure. In this way, HICODE tackles both tasks simultaneously. Extensive experiments on real-world networks demonstrate that HICODE outperforms several state-of-the-art community detection methods in uncovering both the dominant and the hidden structure. In the Facebook university social networks, we find multiple non-redundant sets of communities that are strongly associated with residential hall, year of registration or career position of the faculties or students, while the state-of-the-art algorithms mainly locate the dominant ground truth category. In the Due to the difficulty of labeling all ground truth communities in real-world datasets, HICODE provides a promising approach to pinpoint the existing latent communities and uncover communities for which there is no ground truth. Finding this unknown structure is an extremely important community detection problem.
We develop a Bayesian hierarchical model to identify communities in networks for which we do not observe the edges directly, but instead observe a series of interdependent signals for each of the nodes. Fitting the model provides an end-to-end community detection algorithm that does not extract information as a sequence of point estimates but propagates uncertainties from the raw data to the community labels. Our approach naturally supports multiscale community detection as well as the selection of an optimal scale using model comparison. We study the properties of the algorithm using synthetic data and apply it to daily returns of constituents of the S&P100 index as well as climate data from US cities.
Heterogeneous networks are networks consisting of different types of nodes and multiple types of edges linking such nodes. While community detection has been extensively developed as a useful technique for analyzing networks that contain only one type of nodes, very few community detection techniques have been developed for heterogeneous networks. In this paper, we propose a modularity based community detection framework for heterogeneous networks. Unlike existing methods, the proposed approach has the flexibility to treat the number of communities as an unknown quantity. We describe a Louvain type maximization method for finding the community structure that maximizes the modularity function. Our simulation results show the advantages of the proposed method over existing methods. Moreover, the proposed modularity function is shown to be consistent under a heterogeneous stochastic blockmodel framework. Analyses of the DBLP four-area dataset and a MovieLens dataset demonstrate the usefulness of the proposed method.