Do you want to publish a course? Click here

Metastability as a mechanism for yielding in amorphous solids under cyclic shear

142   0   0.0 ( 0 )
 Added by Muhittin Mungan
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Considering a recently proposed model for the yielding of amorphous solids under cyclic shear deformation, we show that it can be analyzed by mapping it, in the simplest case, to a random walk in a confining potential with an absorbing boundary. The dynamics is governed by the first passage time into the absorbing state, which captures the essential features of the original model, thereby providing insight into the observed robustness of earlier results. Including the possibility of activated escape from absorbing states leads to a unique determination of a threshold energy and yield strain, and further, suggests an appealing approach to understanding fatigue failure.



rate research

Read More

Amorphous solids increase their stress as a function of an applied strain until a mechanical yield point whereupon the stress cannot increase anymore, afterwards exhibiting a steady state with a constant mean stress. In stress controlled experiments the system simply breaks when pushed beyond this mean stress. The ubiquity of this phenomenon over a huge variety of amorphous solids calls for a generic theory that is free of microscopic details. Here we offer such a theory: the mechanical yield is a thermodynamic phase transition, where yield occurs as a spinodal phenomenon. At the spinodal point there exists a divergent correlation length which is associated with the system-spanning instabilities (known also as shear bands) which are typical to the mechanical yield. The theory, the order parameter used and the correlation functions which exhibit the divergent correlation length are universal in nature and can be applied to any amorphous solids that undergo mechanical yield.
Amorphous solids display a ductile to brittle transition as the kinetic stability of the quiescent glass is increased, which leads to a material failure controlled by the sudden emergence of a macroscopic shear band in quasi-static protocols. We numerically study how finite deformation rates influence ductile and brittle yielding behaviors using model glasses in two and three spatial dimensions. We find that a finite shear rate systematically enhances the stress overshoot of poorly-annealed systems, without necessarily producing shear bands. For well-annealed systems, the non-equilibrium discontinuous yielding transition is smeared out by finite shear rates and it is accompanied by the emergence of multiple shear bands that have been also reported in metallic glass experiments. We show that the typical size of the bands and the distance between them increases algebraically with the inverse shear rate. We provide a dynamic scaling argument for the corresponding lengthscale, based on the competition between the deformation rate and the propagation time of the shear bands.
We report on experiments that probe the stability of a two-dimensional jammed granular system formed by imposing a quasistatic simple shear strain $gamma_{rm I}$ on an initially stress free packing. We subject the shear jammed system to quasistatic cyclic shear with strain amplitude $deltagamma$. We observe two distinct outcomes after thousands of shear cycles. For small $gamma_{rm I}$ or large $deltagamma$, the system reaches a stress-free, yielding state exhibiting diffusive strobed particle displacements with a diffusion coefficient proportional to $deltagamma$. For large $gamma_{rm I}$ and small $deltagamma$, the system evolves to a stable state in which both particle positions and contact forces are unchanged after each cycle and the response to small strain reversals is highly elastic. Compared to the original shear jammed state, a stable state reached after many cycles has a smaller stress anisotropy, a much higher shear stiffness, and less tendency to dilate when sheared. Remarkably, we find that stable states show a power-law relation between shear modulus and pressure with an exponent $betaapprox 0.5$, independent of $deltagamma$. Based on our measurements, we construct a phase diagram in the $(gamma_{rm I},deltagamma)$ plane showing where our shear-jammed granular materials either stabilize or yield in the long-time limit.
130 - Srikanth Sastry 2020
Understanding the mechanical response and failure of solids is of obvious importance in their use as structural materials. The nature of plastic deformation leading to yielding of amorphous solids has been vigorously pursued in recent years. Investigations employing both unidirectional and cyclic deformation protocols reveal a strong dependence of yielding behaviour on the degree of annealing. Below a threshold degree of annealing, the nature of yielding changes qualitatively, to progressively more discontinuous yielding. Theoretical investigations of yielding in amorphous solids have almost exclusively focused on yielding under unidirectional deformation, but cyclic deformation reveals several interesting features that remain largely un-investigated. Focusing on athermal cyclic deformation, I investigate a family of models based on an energy landscape description. These models reproduce key interesting features observed in simulations, and provide an interpretation for the intriguing presence of a threshold energy.
The holographic principle has proven successful in linking seemingly unrelated problems in physics; a famous example is the gauge-gravity duality. Recently, intriguing correspondences between the physics of soft matter and gravity are emerging, including strong similarities between the rheology of amorphous solids, effective field theories for elasticity and the physics of black holes. However, direct comparisons between theoretical predictions and experimental/simulation observations remain limited. Here, we study the effects of non-linear elasticity on the mechanical and thermodynamic properties of amorphous materials responding to shear, using effective field and gravitational theories. The predicted correlations among the non-linear elastic exponent, the yielding strain/stress and the entropy change due to shear are supported qualitatively by simulations of granular matter models. Our approach opens a path towards understanding complex mechanical responses of amorphous solids, such as mixed effects of shear softening and shear hardening, and offers the possibility to study the rheology of solid states and black holes in a unified framework.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا