Do you want to publish a course? Click here

InFlow: Robust outlier detection utilizing Normalizing Flows

81   0   0.0 ( 0 )
 Added by Nishant Kumar
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Normalizing flows are prominent deep generative models that provide tractable probability distributions and efficient density estimation. However, they are well known to fail while detecting Out-of-Distribution (OOD) inputs as they directly encode the local features of the input representations in their latent space. In this paper, we solve this overconfidence issue of normalizing flows by demonstrating that flows, if extended by an attention mechanism, can reliably detect outliers including adversarial attacks. Our approach does not require outlier data for training and we showcase the efficiency of our method for OOD detection by reporting state-of-the-art performance in diverse experimental settings. Code available at https://github.com/ComputationalRadiationPhysics/InFlow .



rate research

Read More

Normalizing flows, which learn a distribution by transforming the data to samples from a Gaussian base distribution, have proven powerful density approximations. But their expressive power is limited by this choice of the base distribution. We, therefore, propose to generalize the base distribution to a more elaborate copula distribution to capture the properties of the target distribution more accurately. In a first empirical analysis, we demonstrate that this replacement can dramatically improve the vanilla normalizing flows in terms of flexibility, stability, and effectivity for heavy-tailed data. Our results suggest that the improvements are related to an increased local Lipschitz-stability of the learned flow.
126 - Huadong Liao , Jiawei He 2021
Normalizing flows learn a diffeomorphic mapping between the target and base distribution, while the Jacobian determinant of that mapping forms another real-valued function. In this paper, we show that the Jacobian determinant mapping is unique for the given distributions, hence the likelihood objective of flows has a unique global optimum. In particular, the likelihood for a class of flows is explicitly expressed by the eigenvalues of the auto-correlation matrix of individual data point, and independent of the parameterization of neural network, which provides a theoretical optimal value of likelihood objective and relates to probabilistic PCA. Additionally, Jacobian determinant is a measure of local volume change and is maximized when MLE is used for optimization. To stabilize normalizing flows training, it is required to maintain a balance between the expansiveness and contraction of volume, meaning Lipschitz constraint on the diffeomorphic mapping and its inverse. With these theoretical results, several principles of designing normalizing flow were proposed. And numerical experiments on highdimensional datasets (such as CelebA-HQ 1024x1024) were conducted to show the improved stability of training.
125 - Min Du , Ruoxi Jia , Dawn Song 2019
Outlier detection and novelty detection are two important topics for anomaly detection. Suppose the majority of a dataset are drawn from a certain distribution, outlier detection and novelty detection both aim to detect data samples that do not fit the distribution. Outliers refer to data samples within this dataset, while novelties refer to new samples. In the meantime, backdoor poisoning attacks for machine learning models are achieved through injecting poisoning samples into the training dataset, which could be regarded as outliers that are intentionally added by attackers. Differential privacy has been proposed to avoid leaking any individuals information, when aggregated analysis is performed on a given dataset. It is typically achieved by adding random noise, either directly to the input dataset, or to intermediate results of the aggregation mechanism. In this paper, we demonstrate that applying differential privacy can improve the utility of outlier detection and novelty detection, with an extension to detect poisoning samples in backdoor attacks. We first present a theoretical analysis on how differential privacy helps with the detection, and then conduct extensive experiments to validate the effectiveness of differential privacy in improving outlier detection, novelty detection, and backdoor attack detection.
In supervised learning, it is known that overparameterized neural networks with one hidden layer provably and efficiently learn and generalize, when trained using stochastic gradient descent with sufficiently small learning rate and suitable initialization. In contrast, the benefit of overparameterization in unsupervised learning is not well understood. Normalizing flows (NFs) constitute an important class of models in unsupervised learning for sampling and density estimation. In this paper, we theoretically and empirically analyze these models when the underlying neural network is one-hidden-layer overparameterized network. Our main contributions are two-fold: (1) On the one hand, we provide theoretical and empirical evidence that for a class of NFs containing most of the existing NF models, overparametrization hurts training. (2) On the other hand, we prove that unconstrained NFs, a recently introduced model, can efficiently learn any reasonable data distribution under minimal assumptions when the underlying network is overparametrized.
We give the first polynomial-time algorithm for performing linear or polynomial regression resilient to adversarial corruptions in both examples and labels. Given a sufficiently large (polynomial-size) training set drawn i.i.d. from distribution D and subsequently corrupted on some fraction of points, our algorithm outputs a linear function whose squared error is close to the squared error of the best-fitting linear function with respect to D, assuming that the marginal distribution of D over the input space is emph{certifiably hypercontractive}. This natural property is satisfied by many well-studied distributions such as Gaussian, strongly log-concave distributions and, uniform distribution on the hypercube among others. We also give a simple statistical lower bound showing that some distributional assumption is necessary to succeed in this setting. These results are the first of their kind and were not known to be even information-theoretically possible prior to our work. Our approach is based on the sum-of-squares (SoS) method and is inspired by the recent applications of the method for parameter recovery problems in unsupervised learning. Our algorithm can be seen as a natural convex relaxation of the following conceptually simple non-convex optimization problem: find a linear function and a large subset of the input corrupted sample such that the least squares loss of the function over the subset is minimized over all possible large subsets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا