Do you want to publish a course? Click here

Teacher Model Fingerprinting Attacks Against Transfer Learning

333   0   0.0 ( 0 )
 Added by Yufei Chen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Transfer learning has become a common solution to address training data scarcity in practice. It trains a specified student model by reusing or fine-tuning early layers of a well-trained teacher model that is usually publicly available. However, besides utility improvement, the transferred public knowledge also brings potential threats to model confidentiality, and even further raises other security and privacy issues. In this paper, we present the first comprehensive investigation of the teacher model exposure threat in the transfer learning context, aiming to gain a deeper insight into the tension between public knowledge and model confidentiality. To this end, we propose a teacher model fingerprinting attack to infer the origin of a student model, i.e., the teacher model it transfers from. Specifically, we propose a novel optimization-based method to carefully generate queries to probe the student model to realize our attack. Unlike existing model reverse engineering approaches, our proposed fingerprinting method neither relies on fine-grained model outputs, e.g., posteriors, nor auxiliary information of the model architecture or training dataset. We systematically evaluate the effectiveness of our proposed attack. The empirical results demonstrate that our attack can accurately identify the model origin with few probing queries. Moreover, we show that the proposed attack can serve as a stepping stone to facilitating other attacks against machine learning models, such as model stealing.



rate research

Read More

Machine learning (ML) has progressed rapidly during the past decade and ML models have been deployed in various real-world applications. Meanwhile, machine learning models have been shown to be vulnerable to various security and privacy attacks. One attack that has attracted a great deal of attention recently is the backdoor attack. Specifically, the adversary poisons the target model training set, to mislead any input with an added secret trigger to a target class, while keeping the accuracy for original inputs unchanged. Previous backdoor attacks mainly focus on computer vision tasks. In this paper, we present the first systematic investigation of the backdoor attack against models designed for natural language processing (NLP) tasks. Specifically, we propose three methods to construct triggers in the NLP setting, including Char-level, Word-level, and Sentence-level triggers. Our Attacks achieve an almost perfect success rate without jeopardizing the original model utility. For instance, using the word-level triggers, our backdoor attack achieves 100% backdoor accuracy with only a drop of 0.18%, 1.26%, and 0.19% in the models utility, for the IMDB, Amazon, and Stanford Sentiment Treebank datasets, respectively.
Graph modeling allows numerous security problems to be tackled in a general way, however, little work has been done to understand their ability to withstand adversarial attacks. We design and evaluate two novel graph attacks against a state-of-the-art network-level, graph-based detection system. Our work highlights areas in adversarial machine learning that have not yet been addressed, specifically: graph-based clustering techniques, and a global feature space where realistic attackers without perfect knowledge must be accounted for (by the defenders) in order to be practical. Even though less informed attackers can evade graph clustering with low cost, we show that some practical defenses are possible.
Recently, recommender systems have achieved promising performances and become one of the most widely used web applications. However, recommender systems are often trained on highly sensitive user data, thus potential data leakage from recommender systems may lead to severe privacy problems. In this paper, we make the first attempt on quantifying the privacy leakage of recommender systems through the lens of membership inference. In contrast with traditional membership inference against machine learning classifiers, our attack faces two main differences. First, our attack is on the user-level but not on the data sample-level. Second, the adversary can only observe the ordered recommended items from a recommender system instead of prediction results in the form of posterior probabilities. To address the above challenges, we propose a novel method by representing users from relevant items. Moreover, a shadow recommender is established to derive the labeled training data for training the attack model. Extensive experimental results show that our attack framework achieves a strong performance. In addition, we design a defense mechanism to effectively mitigate the membership inference threat of recommender systems.
Machine learning (ML) applications are increasingly prevalent. Protecting the confidentiality of ML models becomes paramount for two reasons: (a) a model can be a business advantage to its owner, and (b) an adversary may use a stolen model to find transferable adversarial examples that can evade classification by the original model. Access to the model can be restricted to be only via well-defined prediction APIs. Nevertheless, prediction APIs still provide enough information to allow an adversary to mount model extraction attacks by sending repeated queries via the prediction API. In this paper, we describe new model extraction attacks using novel approaches for generating synthetic queries, and optimizing training hyperparameters. Our attacks outperform state-of-the-art model extraction in terms of transferability of both targeted and non-targeted adversarial examples (up to +29-44 percentage points, pp), and prediction accuracy (up to +46 pp) on two datasets. We provide take-aways on how to perform effective model extraction attacks. We then propose PRADA, the first step towards generic and effective detection of DNN model extraction attacks. It analyzes the distribution of consecutive API queries and raises an alarm when this distribution deviates from benign behavior. We show that PRADA can detect all prior model extraction attacks with no false positives.
107 - Lichao Sun , Yingbo Zhou , Ji Wang 2019
Privacy-preserving deep learning is crucial for deploying deep neural network based solutions, especially when the model works on data that contains sensitive information. Most privacy-preserving methods lead to undesirable performance degradation. Ensemble learning is an effective way to improve model performance. In this work, we propose a new method for teacher ensembles that uses more informative network outputs under differential private stochastic gradient descent and provide provable privacy guarantees. Out method employs knowledge distillation and hint learning on intermediate representations to facilitate the training of student model. Additionally, we propose a simple weighted ensemble scheme that works more robustly across different teaching settings. Experimental results on three common image datasets benchmark (i.e., CIFAR10, MINST, and SVHN) demonstrate that our approach outperforms previous state-of-the-art methods on both performance and privacy-budget.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا