Do you want to publish a course? Click here

Dancing Synchronization in Coupled Spin-Torque Nano-Oscillators

216   0   0.0 ( 0 )
 Added by Haitao Wu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We are reporting a new type of synchronization, termed dancing synchronization, between two spin-torque nano-oscillators (STNOs) coupled through spin waves. Different from the known synchronizations in which two STNOs are locked with various fixed relative phases, in this new synchronized state two STNOs have the same frequency, but their relative phase varies periodically within the common period, resulting in a dynamic waving pattern. The amplitude of the oscillating relative phase depends on the coupling strength of two STNOs, as well as the driven currents. The dancing synchronization turns out to be universal, and can exist in two nonlinear Van der Pol oscillators coupled both reactively and dissipativly. Our findings open doors for new functional STNO-based devices.



rate research

Read More

We investigate analytically and numerically the synchronization dynamics of dipolarly coupled vortex based Spin-Torque Nano Oscillators (STNO) with different pillar diameters. We identify the critical interpillar distances on which synchronization occurs as a function of their diameter mismatch. We obtain numerically a phase diagram showing the transition between unsynchronized and synchronized states and compare it to analytical predictions we make using Thiele approach. Our study demonstrates that for relatively small diameters differences the synchronization dynamics can be described qualitatively using Adler equation. However when the diameters difference increases significantly, the system becomes strongly non-Adlerian.
Spin transfer torque nano-oscillators are potential candidates for replacing the traditional inductor based voltage controlled oscillators in modern communication devices. Typical oscillator designs are based on trilayer magnetic tunnel junctions which are disadvantaged by low power outputs and poor conversion efficiencies. In this letter, we theoretically propose to use resonant spin filtering in pentalayer magnetic tunnel junctions as a possible route to alleviate these issues and present device designs geared toward a high microwave output power and an efficient conversion of the d.c. input power. We attribute these robust qualities to the resulting non-trivial spin current profiles and the ultra high tunnel magnetoresistance, both arising from resonant spin filtering. The device designs are based on the nonequilibrium Greens function spin transport formalism self-consistently coupled with the stochastic Landau-Lifshitz-Gilbert-Slonczewskis equation and the Poissons equation. We demonstrate that the proposed structures facilitate oscillator designs featuring a large enhancement in microwave power of around $775%$ and an efficiency enhancement of over $1300%$ in comparison with typical trilayer designs. We also rationalize the optimum operating regions via an analysis of the dynamic and static device resistances. This work sets stage for pentalyer spin transfer torque nano-oscillator device designs that extenuate most of the issues faced by the typical trilayer designs.
Due to their nonlinear properties, spin transfer nano-oscillators can easily adapt their frequency to external stimuli. This makes them interesting model systems to study the effects of synchronization and brings some opportunities to improve their microwave characteristics in view of their applications in information and communication technologies and to design innovative computing architectures. So far, mutual synchronization of spin transfer nano-oscillators through propagating spin-waves and exchange coupling in a common magnetic layer has been demonstrated. Here we show that the dipolar interaction is also an efficient mechanism to synchronize neighbouring oscillators. We experimentally study a pair of vortex-based spin-transfer nano-oscillators, in which mutual synchronization can be achieved despite a significant frequency mismatch between oscillators. Importantly, the coupling efficiency is controlled by the magnetic configuration of the vortices, as confirmed by an analytical model highlighting the physics at play in the synchronization process as well as by micromagnetic simulations.
In this paper, we propose to control the strength of phase-locking between two dipolarly coupled vortex based spin-torque nano-oscillators by placing an intermediate oscillator between them. We show through micromagnetic simulations that the strength of phase-locking can be largely tuned by a slight variation of current in the intermediate oscillator. We develop simplified numerical simulations based on analytical expressions of the vortex core trajectories that will be useful for investigating large arrays of densely packed spin-torque oscillators interacting through their stray fields.
Spin-orbit torque nano-oscillators based on bilayers of ferromagnetic (FM) and nonmagnetic (NM) metals are ultra-compact current-controlled microwave signal sources. They serve as a convenient testbed for studies of spin-orbit torque physics and are attractive for practical applications such as microwave assisted magnetic recording, neuromorphic computing, and chip-to-chip wireless communications. However, a major drawback of these devices is low output microwave power arising from the relatively small anisotropic magnetoresistance (AMR) of the FM layer. Here we experimentally show that the output power of a spin-orbit torque nano-oscillator can be enhanced by nearly three orders of magnitude without compromising its structural simplicity. Addition of a FM reference layer to the oscillator allows us to employ current-in-plane giant magnetoresistance (CIP GMR) to boost the output power of the device. This enhancement of the output power is a result of both large magnitude of GMR compared to that of AMR and different angular dependences of GMR and AMR. Our results pave the way for practical applications of spin-orbit torque nano-oscillators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا