Do you want to publish a course? Click here

The Shannon Lower Bound is Asymptotically Tight

328   0   0.0 ( 0 )
 Added by Tobias Koch
 Publication date 2015
and research's language is English
 Authors Tobias Koch




Ask ChatGPT about the research

The Shannon lower bound is one of the few lower bounds on the rate-distortion function that holds for a large class of sources. In this paper, it is demonstrated that its gap to the rate-distortion function vanishes as the allowed distortion tends to zero for all sources having a finite differential entropy and whose integer part is finite. Conversely, it is demonstrated that if the integer part of the source has an infinite entropy, then its rate-distortion function is infinite for every finite distortion. Consequently, the Shannon lower bound provides an asymptotically tight bound on the rate-distortion function if, and only if, the integer part of the source has a finite entropy.



rate research

Read More

Shannon gave a lower bound in 1959 on the binary rate of spherical codes of given minimum Euclidean distance $rho$. Using nonconstructive codes over a finite alphabet, we give a lower bound that is weaker but very close for small values of $rho$. The construction is based on the Yaglom map combined with some finite sphere packings obtained from nonconstructive codes for the Euclidean metric. Concatenating geometric codes meeting the TVZ bound with a Lee metric BCH code over $GF(p),$ we obtain spherical codes that are polynomial time constructible. Their parameters outperform those obtained by Lachaud and Stern in 1994. At very high rate they are above 98 per cent of the Shannon bound.
171 - Yunpeng Zhao 2021
We prove a Bernstein-type bound for the difference between the average of negative log-likelihoods of independent discrete random variables and the Shannon entropy, both defined on a countably infinite alphabet. The result holds for the class of discrete random variables with tails lighter than or on the same order of a discrete power-law distribution. Most commonly-used discrete distributions such as the Poisson distribution, the negative binomial distribution, and the power-law distribution itself belong to this class. The bound is effective in the sense that we provide a method to compute the constants in it.
A correlated phase-and-additive-noise (CPAN) mismatched model is developed for wavelength division multiplexing over optical fiber channels governed by the nonlinear Schrodinger equation. Both the phase and additive noise processes of the CPAN model are Gauss-Markov whereas previous work uses Wiener phase noise and white additive noise. Second order statistics are derived and lower bounds on the capacity are computed by simulations. The CPAN model characterizes nonlinearities better than existing models in the sense that it achieves better information rates. For example, the model gains 0.35 dB in power at the peak data rate when using a single carrier per wavelength. For multiple carriers per wavelength, the model combined with frequency-dependent power allocation gains 0.14 bits/s/Hz in rate and 0.8 dB in power at the peak data rate.
We consider the classic joint source-channel coding problem of transmitting a memoryless source over a memoryless channel. The focus of this work is on the long-standing open problem of finding the rate of convergence of the smallest attainable expected distortion to its asymptotic value, as a function of blocklength $n$. Our main result is that in general the convergence rate is not faster than $n^{-1/2}$. In particular, we show that for the problem of transmitting i.i.d uniform bits over a binary symmetric channels with Hamming distortion, the smallest attainable distortion (bit error rate) is at least $Omega(n^{-1/2})$ above the asymptotic value, if the ``bandwidth expansion ratio is above $1$.
Regular perturbation is applied to the Manakov equation and motivates a generalized correlated phase-and-additive noise model for wavelength-division multiplexing over dual-polarization optical fiber channels. The model includes three hidden Gauss-Markov processes: phase noise, polarization rotation, and additive noise. Particle filtering is used to compute lower bounds on the capacity of multi-carrier communication with frequency-dependent powers and delays. A gain of 0.17 bits/s/Hz/pol in spectral efficiency or 0.8 dB in power efficiency is achieved with respect to existing models at their peak data rate. Frequency-dependent delays also increase the spectral efficiency of single-polarization channels.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا