Do you want to publish a course? Click here

MIMHD: Accurate and Efficient Hyperdimensional Inference Using Multi-Bit In-Memory Computing

122   0   0.0 ( 0 )
 Added by Arman Kazemi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Hyperdimensional Computing (HDC) is an emerging computational framework that mimics important brain functions by operating over high-dimensional vectors, called hypervectors (HVs). In-memory computing implementations of HDC are desirable since they can significantly reduce data transfer overheads. All existing in-memory HDC platforms consider binary HVs where each dimension is represented with a single bit. However, utilizing multi-bit HVs allows HDC to achieve acceptable accuracies in lower dimensions which in turn leads to higher energy efficiencies. Thus, we propose a highly accurate and efficient multi-bit in-memory HDC inference platform called MIMHD. MIMHD supports multi-bit operations using ferroelectric field-effect transistor (FeFET) crossbar arrays for multiply-and-add and FeFET multi-bit content-addressable memories for associative search. We also introduce a novel hardware-aware retraining framework (HWART) that trains the HDC model to learn to work with MIMHD. For six popular datasets and 4000 dimension HVs, MIMHD using 3-bit (2-bit) precision HVs achieves (i) average accuracies of 92.6% (88.9%) which is 8.5% (4.8%) higher than binary implementations; (ii) 84.1x (78.6x) energy improvement over a GPU, and (iii) 38.4x (34.3x) speedup over a GPU, respectively. The 3-bit $times$ is 4.3x and 13x faster and more energy-efficient than binary HDC accelerators while achieving similar accuracies.



rate research

Read More

One viable solution for continuous reduction in energy-per-operation is to rethink functionality to cope with uncertainty by adopting computational approaches that are inherently robust to uncertainty. It requires a novel look at data representations, associated operations, and circuits, and at materials and substrates that enable them. 3D integrated nanotechnologies combined with novel brain-inspired computational paradigms that support fast learning and fault tolerance could lead the way. Recognizing the very size of the brains circuits, hyperdimensional (HD) computing can model neural activity patterns with points in a HD space, that is, with hypervectors as large randomly generated patterns. At its very core, HD computing is about manipulating and comparing these patterns inside memory. Emerging nanotechnologies such as carbon nanotube field effect transistors (CNFETs) and resistive RAM (RRAM), and their monolithic 3D integration offer opportunities for hardware implementations of HD computing through tight integration of logic and memory, energy-efficient computation, and unique device characteristics. We experimentally demonstrate and characterize an end-to-end HD computing nanosystem built using monolithic 3D integration of CNFETs and RRAM. With our nanosystem, we experimentally demonstrate classification of 21 languages with measured accuracy of up to 98% on >20,000 sentences (6.4 million characters), training using one text sample (~100,000 characters) per language, and resilient operation (98% accuracy) despite 78% hardware errors in HD representation (outputs stuck at 0 or 1). By exploiting the unique properties of the underlying nanotechnologies, we show that HD computing, when implemented with monolithic 3D integration, can be up to 420X more energy-efficient while using 25X less area compared to traditional silicon CMOS implementations.
The emerging brain-inspired computing paradigm known as hyperdimensional computing (HDC) has been proven to provide a lightweight learning framework for various cognitive tasks compared to the widely used deep learning-based approaches. Spatio-temporal (ST) signal processing, which encompasses biosignals such as electromyography (EMG) and electroencephalography (EEG), is one family of applications that could benefit from an HDC-based learning framework. At the core of HDC lie manipulations and comparisons of large bit patterns, which are inherently ill-suited to conventional computing platforms based on the von-Neumann architecture. In this work, we propose an architecture for ST signal processing within the HDC framework using predominantly in-memory compute arrays. In particular, we introduce a methodology for the in-memory hyperdimensional encoding of ST data to be used together with an in-memory associative search module. We show that the in-memory HDC encoder for ST signals offers at least 1.80x energy efficiency gains, 3.36x area gains, as well as 9.74x throughput gains compared with a dedicated digital hardware implementation. At the same time it achieves a peak classification accuracy within 0.04% of that of the baseline HDC framework.
In-memory computing is a promising non-von Neumann approach for making energy-efficient deep learning inference hardware. Crossbar arrays of resistive memory devices can be used to encode the network weights and perform efficient analog matrix-vector multiplications without intermediate movements of data. However, due to device variability and noise, the network needs to be trained in a specific way so that transferring the digitally trained weights to the analog resistive memory devices will not result in significant loss of accuracy. Here, we introduce a methodology to train ResNet-type convolutional neural networks that results in no appreciable accuracy loss when transferring weights to in-memory computing hardware based on phase-change memory (PCM). We also propose a compensation technique that exploits the batch normalization parameters to improve the accuracy retention over time. We achieve a classification accuracy of 93.7% on the CIFAR-10 dataset and a top-1 accuracy on the ImageNet benchmark of 71.6% after mapping the trained weights to PCM. Our hardware results on CIFAR-10 with ResNet-32 demonstrate an accuracy above 93.5% retained over a one day period, where each of the 361,722 synaptic weights of the network is programmed on just two PCM devices organized in a differential configuration.
Computing-in-memory (CIM) is proposed to alleviate the processor-memory data transfer bottleneck in traditional Von-Neumann architectures, and spintronics-based magnetic memory has demonstrated many facilitation in implementing CIM paradigm. Since hardware security has become one of the major concerns in circuit designs, this paper, for the first time, investigates spin-based computing-in-memory (SpinCIM) from a security perspective. We focus on two fundamental questions: 1) how the new SpinCIM computing paradigm can be exploited to enhance hardware security? 2) what security concerns has this new SpinCIM computing paradigm incurred?
Bayesian inference is an effective approach for solving statistical learning problems, especially with uncertainty and incompleteness. However, Bayesian inference is a computing-intensive task whose efficiency is physically limited by the bottlenecks of conventional computing platforms. In this work, a spintronics based stochastic computing approach is proposed for efficient Bayesian inference. The inherent stochastic switching behaviors of spintronic devices are exploited to build stochastic bitstream generator (SBG) for stochastic computing with hybrid CMOS/MTJ circuits design. Aiming to improve the inference efficiency, an SBG sharing strategy is leveraged to reduce the required SBG array scale by integrating a switch network between SBG array and stochastic computing logic. A device-to-architecture level framework is proposed to evaluate the performance of spintronics based Bayesian inference system (SPINBIS). Experimental results on data fusion applications have shown that SPINBIS could improve the energy efficiency about 12X than MTJ-based approach with 45% design area overhead and about 26X than FPGA-based approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا