Do you want to publish a course? Click here

P2T: Pyramid Pooling Transformer for Scene Understanding

361   0   0.0 ( 0 )
 Added by Yun Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper jointly resolves two problems in vision transformer: i) the computation of Multi-Head Self-Attention (MHSA) has high computational/space complexity; ii) recent vision transformer networks are overly tuned for image classification, ignoring the difference between image classification (simple scenarios, more similar to NLP) and downstream scene understanding tasks (complicated scenarios, rich structural and contextual information). To this end, we note that pyramid pooling has been demonstrated to be effective in various vision tasks owing to its powerful ability in context abstraction, and its natural property of spatial invariance is also suitable to address the loss of structural information (problem ii)). Hence, we propose to adapt pyramid pooling to MHSA for alleviating its high requirement on computational resources (problem i)). In this way, this pooling-based MHSA can well address the above two problems and is thus flexible and powerful for downstream scene understanding tasks. Plugged with our pooling-based MHSA, we build a downstream-task-oriented transformer network, dubbed Pyramid Pooling Transformer (P2T). Extensive experiments demonstrate that, when applied P2T as the backbone network, it shows substantial superiority in various downstream scene understanding tasks such as semantic segmentation, object detection, instance segmentation, and visual saliency detection, compared to previous CNN- and transformer-based networks. The code will be released at https://github.com/yuhuan-wu/P2T.



rate research

Read More

Deep neural networks have been a prevailing technique in the field of medical image processing. However, the most popular convolutional neural networks (CNNs) based methods for medical image segmentation are imperfect because they model long-range dependencies by stacking layers or enlarging filters. Transformers and the self-attention mechanism are recently proposed to effectively learn long-range dependencies by modeling all pairs of word-to-word attention regardless of their positions. The idea has also been extended to the computer vision field by creating and treating image patches as embeddings. Considering the computation complexity for whole image self-attention, current transformer-based models settle for a rigid partitioning scheme that potentially loses informative relations. Besides, current medical transformers model global context on full resolution images, leading to unnecessary computation costs. To address these issues, we developed a novel method to integrate multi-scale attention and CNN feature extraction using a pyramidal network architecture, namely Pyramid Medical Transformer (PMTrans). The PMTrans captured multi-range relations by working on multi-resolution images. An adaptive partitioning scheme was implemented to retain informative relations and to access different receptive fields efficiently. Experimental results on three medical image datasets (gland segmentation, MoNuSeg, and HECKTOR datasets) showed that PMTrans outperformed the latest CNN-based and transformer-based models for medical image segmentation.
Deep hashing approaches, including deep quantization and deep binary hashing, have become a common solution to large-scale image retrieval due to high computation and storage efficiency. Most existing hashing methods can not produce satisfactory results for fine-grained retrieval, because they usually adopt the outputs of the last CNN layer to generate binary codes, which is less effective to capture subtle but discriminative visual details. To improve fine-grained image hashing, we propose Pyramid Hybrid Pooling Quantization (PHPQ). Specifically, we propose a Pyramid Hybrid Pooling (PHP) module to capture and preserve fine-grained semantic information from multi-level features. Besides, we propose a learnable quantization module with a partial attention mechanism, which helps to optimize the most relevant codewords and improves the quantization. Comprehensive experiments demonstrate that PHPQ outperforms state-of-the-art methods.
86 - Fangrui Zhu , Yi Zhu , Li Zhang 2021
Semantic segmentation is a challenging problem due to difficulties in modeling context in complex scenes and class confusions along boundaries. Most literature either focuses on context modeling or boundary refinement, which is less generalizable in open-world scenarios. In this work, we advocate a unified framework(UN-EPT) to segment objects by considering both context information and boundary artifacts. We first adapt a sparse sampling strategy to incorporate the transformer-based attention mechanism for efficient context modeling. In addition, a separate spatial branch is introduced to capture image details for boundary refinement. The whole model can be trained in an end-to-end manner. We demonstrate promising performance on three popular benchmarks for semantic segmentation with low memory footprint. Code will be released soon.
Learning discriminative and invariant feature representation is the key to visual image categorization. In this article, we propose a novel invariant deep compressible covariance pooling (IDCCP) to solve nuisance variations in aerial scene categorization. We consider transforming the input image according to a finite transformation group that consists of multiple confounding orthogonal matrices, such as the D4 group. Then, we adopt a Siamese-style network to transfer the group structure to the representation space, where we can derive a trivial representation that is invariant under the group action. The linear classifier trained with trivial representation will also be possessed with invariance. To further improve the discriminative power of representation, we extend the representation to the tensor space while imposing orthogonal constraints on the transformation matrix to effectively reduce feature dimensions. We conduct extensive experiments on the publicly released aerial scene image data sets and demonstrate the superiority of this method compared with state-of-the-art methods. In particular, with using ResNet architecture, our IDCCP model can reduce the dimension of the tensor representation by about 98% without sacrificing accuracy (i.e., <0.5%).
We develop a Learning Direct Optimization (LiDO) method for the refinement of a latent variable model that describes input image x. Our goal is to explain a single image x with an interpretable 3D computer graphics model having scene graph latent variables z (such as object appearance, camera position). Given a current estimate of z we can render a prediction of the image g(z), which can be compared to the image x. The standard way to proceed is then to measure the error E(x, g(z)) between the two, and use an optimizer to minimize the error. However, it is unknown which error measure E would be most effective for simultaneously addressing issues such as misaligned objects, occlusions, textures, etc. In contrast, the LiDO approach trains a Prediction Network to predict an update directly to correct z, rather than minimizing the error with respect to z. Experiments show that our LiDO method converges rapidly as it does not need to perform a search on the error landscape, produces better solutions than error-based competitors, and is able to handle the mismatch between the data and the fitted scene model. We apply LiDO to a realistic synthetic dataset, and show that the method also transfers to work well with real images.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا