No Arabic abstract
Active Learning is essential for more label-efficient deep learning. Bayesian Active Learning has focused on BALD, which reduces model parameter uncertainty. However, we show that BALD gets stuck on out-of-distribution or junk data that is not relevant for the task. We examine a novel *Expected Predictive Information Gain (EPIG)* to deal with distribution shifts of the pool set. EPIG reduces the uncertainty of *predictions* on an unlabelled *evaluation set* sampled from the test data distribution whose distribution might be different to the pool set distribution. Based on this, our new EPIG-BALD acquisition function for Bayesian Neural Networks selects samples to improve the performance on the test data distribution instead of selecting samples that reduce model uncertainty everywhere, including for out-of-distribution regions with low density in the test data distribution. Our method outperforms state-of-the-art Bayesian active learning methods on high-dimensional datasets and avoids out-of-distribution junk data in cases where current state-of-the-art methods fail.
Noisy labeled data is more a norm than a rarity for self-generated content that is continuously published on the web and social media. Due to privacy concerns and governmental regulations, such a data stream can only be stored and used for learning purposes in a limited duration. To overcome the noise in this on-line scenario we propose QActor which novel combines: the selection of supposedly clean samples via quality models and actively querying an oracle for the most informative true labels. While the former can suffer from low data volumes of on-line scenarios, the latter is constrained by the availability and costs of human experts. QActor swiftly combines the merits of quality models for data filtering and oracle queries for cleaning the most informative data. The objective of QActor is to leverage the stringent oracle budget to robustly maximize the learning accuracy. QActor explores various strategies combining different query allocations and uncertainty measures. A central feature of QActor is to dynamically adjust the query limit according to the learning loss for each data batch. We extensively evaluate different image datasets fed into the classifier that can be standard machine learning (ML) models or deep neural networks (DNN) with noise label ratios ranging between 30% and 80%. Our results show that QActor can nearly match the optimal accuracy achieved using only clean data at the cost of at most an additional 6% of ground truth data from the oracle.
With the widespread use of machine learning for classification, it becomes increasingly important to be able to use weaker kinds of supervision for tasks in which it is hard to obtain standard labeled data. One such kind of supervision is provided pairwise---in the form of Similar (S) pairs (if two examples belong to the same class) and Dissimilar (D) pairs (if two examples belong to different classes). This kind of supervision is realistic in privacy-sensitive domains. Although this problem has been looked at recently, it is unclear how to learn from such supervision under label noise, which is very common when the supervision is crowd-sourced. In this paper, we close this gap and demonstrate how to learn a classifier from noisy S and D labeled data. We perform a detailed investigation of this problem under two realistic noise models and propose two algorithms to learn from noisy S-D data. We also show important connections between learning from such pairwise supervision data and learning from ordinary class-labeled data. Finally, we perform experiments on synthetic and real world datasets and show our noise-informed algorithms outperform noise-blind baselines in learning from noisy pairwise data.
This paper addresses the problem of multiclass classification with corrupted or noisy bandit feedback. In this setting, the learner may not receive true feedback. Instead, it receives feedback that has been flipped with some non-zero probability. We propose a novel approach to deal with noisy bandit feedback based on the unbiased estimator technique. We further offer a method that can efficiently estimate the noise rates, thus providing an end-to-end framework. The proposed algorithm enjoys a mistake bound of the order of $O(sqrt{T})$ in the high noise case and of the order of $O(T^{ icefrac{2}{3}})$ in the worst case. We show our approachs effectiveness using extensive experiments on several benchmark datasets.
In open set learning, a model must be able to generalize to novel classes when it encounters a sample that does not belong to any of the classes it has seen before. Open set learning poses a realistic learning scenario that is receiving growing attention. Existing studies on open set learning mainly focused on detecting novel classes, but few studies tried to model them for differentiating novel classes. In this paper, we recognize that novel classes should be different from each other, and propose distribution networks for open set learning that can model different novel classes based on probability distributions. We hypothesize that, through a certain mapping, samples from different classes with the same classification criterion should follow different probability distributions from the same distribution family. A deep neural network is learned to map the samples in the original feature space to a latent space where the distributions of known classes can be jointly learned with the network. We additionally propose a distribution parameter transfer and updating strategy for novel class modeling when a novel class is detected in the latent space. By novel class modeling, the detected novel classes can serve as known classes to the subsequent classification. Our experimental results on image datasets MNIST and CIFAR10 show that the distribution networks can detect novel classes accurately, and model them well for the subsequent classification tasks.
Active learning (AL) selects the most beneficial unlabeled samples to label, and hence a better machine learning model can be trained from the same number of labeled samples. Most existing active learning for regression (ALR) approaches are supervised, which means the sampling process must use some label information, or an existing regression model. This paper considers completely unsupervised ALR, i.e., how to select the samples to label without knowing any true label information. We propose a novel unsupervised ALR approach, iterative representativeness-diversity maximization (iRDM), to optimally balance the representativeness and the diversity of the selected samples. Experiments on 12 datasets from various domains demonstrated its effectiveness. Our iRDM can be applied to both linear regression and kernel regression, and it even significantly outperforms supervised ALR when the number of labeled samples is small.