No Arabic abstract
This paper addresses the problem of multiclass classification with corrupted or noisy bandit feedback. In this setting, the learner may not receive true feedback. Instead, it receives feedback that has been flipped with some non-zero probability. We propose a novel approach to deal with noisy bandit feedback based on the unbiased estimator technique. We further offer a method that can efficiently estimate the noise rates, thus providing an end-to-end framework. The proposed algorithm enjoys a mistake bound of the order of $O(sqrt{T})$ in the high noise case and of the order of $O(T^{ icefrac{2}{3}})$ in the worst case. We show our approachs effectiveness using extensive experiments on several benchmark datasets.
This paper introduces a new online learning framework for multiclass classification called learning with diluted bandit feedback. At every time step, the algorithm predicts a candidate label set instead of a single label for the observed example. It then receives feedback from the environment whether the actual label lies in this candidate label set or not. This feedback is called diluted bandit feedback. Learning in this setting is even more challenging than the bandit feedback setting, as there is more uncertainty in the supervision. We propose an algorithm for multiclass classification using dilute bandit feedback (MC-DBF), which uses the exploration-exploitation strategy to predict the candidate set in each trial. We show that the proposed algorithm achieves O(T^{1-frac{1}{m+2}}) mistake bound if candidate label set size (in each step) is m. We demonstrate the effectiveness of the proposed approach with extensive simulations.
In many real-world applications, multiple agents seek to learn how to perform highly related yet slightly different tasks in an online bandit learning protocol. We formulate this problem as the $epsilon$-multi-player multi-armed bandit problem, in which a set of players concurrently interact with a set of arms, and for each arm, the reward distributions for all players are similar but not necessarily identical. We develop an upper confidence bound-based algorithm, RobustAgg$(epsilon)$, that adaptively aggregates rewards collected by different players. In the setting where an upper bound on the pairwise similarities of reward distributions between players is known, we achieve instance-dependent regret guarantees that depend on the amenability of information sharing across players. We complement these upper bounds with nearly matching lower bounds. In the setting where pairwise similarities are unknown, we provide a lower bound, as well as an algorithm that trades off minimax regret guarantees for adaptivity to unknown similarity structure.
We formulate a new problem at the intersectionof semi-supervised learning and contextual bandits,motivated by several applications including clini-cal trials and ad recommendations. We demonstratehow Graph Convolutional Network (GCN), a semi-supervised learning approach, can be adjusted tothe new problem formulation. We also propose avariant of the linear contextual bandit with semi-supervised missing rewards imputation. We thentake the best of both approaches to develop multi-GCN embedded contextual bandit. Our algorithmsare verified on several real world datasets.
We consider the problem of learning in episodic finite-horizon Markov decision processes with an unknown transition function, bandit feedback, and adversarial losses. We propose an efficient algorithm that achieves $mathcal{tilde{O}}(L|X|sqrt{|A|T})$ regret with high probability, where $L$ is the horizon, $|X|$ is the number of states, $|A|$ is the number of actions, and $T$ is the number of episodes. To the best of our knowledge, our algorithm is the first to ensure $mathcal{tilde{O}}(sqrt{T})$ regret in this challenging setting; in fact it achieves the same regret bound as (Rosenberg & Mansour, 2019a) that considers an easier setting with full-information feedback. Our key technical contributions are two-fold: a tighter confidence set for the transition function, and an optimistic loss estimator that is inversely weighted by an $textit{upper occupancy bound}$.
We consider the online multiclass linear classification under the bandit feedback setting. Beygelzimer, P{a}l, Sz{o}r{e}nyi, Thiruvenkatachari, Wei, and Zhang [ICML19] considered two notions of linear separability, weak and strong linear separability. When examples are strongly linearly separable with margin $gamma$, they presented an algorithm based on Multiclass Perceptron with mistake bound $O(K/gamma^2)$, where $K$ is the number of classes. They employed rational kernel to deal with examples under the weakly linearly separable condition, and obtained the mistake bound of $min(Kcdot 2^{tilde{O}(Klog^2(1/gamma))},Kcdot 2^{tilde{O}(sqrt{1/gamma}log K)})$. In this paper, we refine the notion of weak linear separability to support the notion of class grouping, called group weak linear separable condition. This situation may arise from the fact that class structures contain inherent grouping. We show that under this condition, we can also use the rational kernel and obtain the mistake bound of $Kcdot 2^{tilde{O}(sqrt{1/gamma}log L)})$, where $Lleq K$ represents the number of groups.