Do you want to publish a course? Click here

Constraints on the abundance of massive primordial black holes from lensing of compact radio sources

66   0   0.0 ( 0 )
 Added by Huan Zhou
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The possibility that primordial black holes (PBHs) form a part of dark matter has been considered over a wide mass range from the Planck mass ($10^{-5}~rm g$) to the level of the supermassive black hole in the center of the galaxy. Primordial origin might be one of the most important formation channel of massive black holes. We propose the lensing effect of very long baseline interferometer observations of compact radio sources with extremely high angular resolution as a promising probe for the presence of intergalactic PBHs in the mass range $sim10^2$-$10^9~M_{odot}$. For a sample of well-measured 543 compact radio sources, no millilensing multiple images are found with angular separations between $0.2$ milliarcsecond and $50$ milliarcseconds. From this null search result, we derive that the fraction of dark matter made up of PBHs in the mass range $sim10^4$-$10^8~M_{odot}$ is $lesssim0.56%$ at $68%$ confidence level.



rate research

Read More

The possibility that primordial black holes (PBHs) form a part of dark matter has been considered for a long time but poorly constrained in the $1-100~M_{odot}$ (or stellar mass range). However, a renewed special interest of PBHs in this mass window was triggered by the discovery at LIGO of the merger events of black-hole binaries. Fast radio bursts (FRBs) are bright radio transients with millisecond duration and high all-sky occurrence rate. Lensing effect of these bursts has been proposed as one of the cleanest probes for constraining the presence of PBHs in the stellar mass window. In this paper, we first investigate constraints on the abundance of PBHs from the latest FRB observations for both the monochromatic mass distribution and three other popular extended mass distributions (EMDs). We find that constraints from currently public FRB observations are relatively weaker than those from existing gravitational wave detections. Furthermore, we forecast constraining power of future FRB observations on the abundance of PBHs with different mass distributions of PBHs and different redshift distributions of FRBs taken into account. Finally, We find that constraints of parameter space on EMDs from $sim10^5$ FRBs with $overline{Delta t}leq1 ~rm ms$ would be comparable with what can be constrained from gravitational wave events. It is foreseen that upcoming complementary multi-messenger observations will yield considerable constraints on the possibilities of PBHs in this intriguing mass window.
We update the constraints on the fraction of the Universe that may have gone into primordial black holes (PBHs) over the mass range $10^{-5}text{--}10^{50}$ g. Those smaller than $sim 10^{15}$ g would have evaporated by now due to Hawking radiation, so their abundance at formation is constrained by the effects of evaporated particles on big bang nucleosynthesis, the cosmic microwave background (CMB), the Galactic and extragalactic $gamma$-ray and cosmic ray backgrounds and the possible generation of stable Planck mass relics. PBHs larger than $sim 10^{15}$ g are subject to a variety of constraints associated with gravitational lensing, dynamical effects, influence on large-scale structure, accretion and gravitational waves. We discuss the constraints on both the initial collapse fraction and the current fraction of the CDM in PBHs at each mass scale but stress that many of the constraints are associated with observational or theoretical uncertainties. We also consider indirect constraints associated with the amplitude of the primordial density fluctuations, such as second-order tensor perturbations and $mu$-distortions arising from the effect of acoustic reheating on the CMB, if PBHs are created from the high-$sigma$ peaks of nearly Gaussian fluctuations. Finally we discuss how the constraints are modified if the PBHs have an extended mass function, this being relevant if PBHs provide some combination of the dark matter, the LIGO/Virgo coalescences and the seeds for cosmic structure. Even if PBHs make a small contribution to the dark matter, they could play an important cosmological role and provide a unique probe of the early Universe.
The fraction of the Universe going into primordial black holes (PBHs) with initial mass M_* approx 5 times 10^{14} g, such that they are evaporating at the present epoch, is strongly constrained by observations of both the extragalactic and Galactic gamma-ray backgrounds. However, while the dominant contribution to the extragalactic background comes from the time-integrated emission of PBHs with initial mass M_*, the Galactic background is dominated by the instantaneous emission of those with initial mass slightly larger than M_* and current mass below M_*. Also, the instantaneous emission of PBHs smaller than 0.4 M_* mostly comprises secondary particles produced by the decay of directly emitted quark and gluon jets. These points were missed in the earlier analysis by Lehoucq et al. using EGRET data. For a monochromatic PBH mass function, with initial mass (1+mu) M_* and mu << 1, the current mass is (3mu)^{1/3} M_* and the Galactic background constrains the fraction of the Universe going into PBHs as a function of mu. However, the initial mass function cannot be precisely monochromatic and even a tiny spread of mass around M_* would generate a current low-mass tail of PBHs below M_*. This tail would be the main contributor to the Galactic background, so we consider its form and the associated constraints for a variety of scenarios with both extended and nearly-monochromatic initial mass functions. In particular, we consider a scenario in which the PBHs form from critical collapse and have a mass function which peaks well above M_*. In this case, the largest PBHs could provide the dark matter without the M_* ones exceeding the gamma-ray background limits.
We consider the application of peaks theory to the calculation of the number density of peaks relevant for primordial black hole (PBH) formation. For PBHs, the final mass is related to the amplitude and scale of the perturbation from which it forms, where the scale is defined as the scale at which the compaction function peaks. We therefore extend peaks theory to calculate not only the abundance of peaks of a given amplitude, but peaks of a given amplitude and scale. A simple fitting formula is given in the high-peak limit relevant for PBH formation. We also adapt the calculation to use a Gaussian smoothing function, ensuring convergence regardless of the choice of power spectrum.
Primordial magnetic field (PMF) is one of the feasible candidates to explain observed large-scale magnetic fields, for example, intergalactic magnetic fields. We present a new mechanism that brings us information about PMFs on small scales based on the abundance of primordial black holes (PBHs). The anisotropic stress of the PMFs can act as a source of the super-horizon curvature perturbation in the early universe. If the amplitude of PMFs is sufficiently large, the resultant density perturbation also has a large amplitude, and thereby, the PBH abundance is enhanced. Since the anisotropic stress of the PMFs is consist of the square of the magnetic fields, the statistics of the density perturbation follows the non-Gaussian distribution. Assuming Gaussian distributions and delta-function type power spectrum for PMFs, based on a Monte-Carlo method, we obtain an approximate probability density function of the density perturbation, and it is an important piece to relate the amplitude of PMFs with the abundance of PBHs. Finally, we place the strongest constraint on the amplitude of PMFs as a few hundred nano-Gauss on $10^{2};{rm Mpc}^{-1} leq kleq 10^{18};{rm Mpc}^{-1}$ where the typical cosmological observations never reach.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا