No Arabic abstract
We consider the application of peaks theory to the calculation of the number density of peaks relevant for primordial black hole (PBH) formation. For PBHs, the final mass is related to the amplitude and scale of the perturbation from which it forms, where the scale is defined as the scale at which the compaction function peaks. We therefore extend peaks theory to calculate not only the abundance of peaks of a given amplitude, but peaks of a given amplitude and scale. A simple fitting formula is given in the high-peak limit relevant for PBH formation. We also adapt the calculation to use a Gaussian smoothing function, ensuring convergence regardless of the choice of power spectrum.
We discuss the effect of local type non-Gaussianity on the abundance of primordial black holes (PBH) based on the peak theory. We provide the PBH formation criterion based on the so-called compaction function and use the peak theory statistics associated with the curvature perturbation with the local type non-Gaussianity. Providing a method to estimate the PBH abundance, we demonstrate the effects of non-Gaussianity. It is explicitly shown that the value of non-linear parameter $|f_{rm NL}| sim 1$ induces a similar effect to a few factors of difference in the amplitude of the power spectrum.
We modify the procedure to estimate PBH abundance proposed in arXiv:1805.03946 so that it can be applied to a broad power spectrum such as the scale-invariant flat power spectrum. In the new procedure, we focus on peaks of the Laplacian of the curvature perturbation $triangle zeta$ and use the values of $triangle zeta$ and $triangle triangle zeta $ at each peak to specify the profile of $zeta$ as a function of the radial coordinate while the values of $zeta$ and $triangle zeta$ are used in arXiv:1805.03946. The new procedure decouples the larger-scale environmental effect from the estimate of PBH abundance. Because the redundant variance due to the environmental effect is eliminated, we obtain a narrower shape of the mass spectrum compared to the previous procedure in arXiv:1805.03946. Furthermore, the new procedure allows us to estimate PBH abundance for the scale-invariant flat power spectrum by introducing a window function. Although the final result depends on the choice of the window function, we show that the $k$-space tophat window minimizes the extra reduction of the mass spectrum due to the window function. That is, the $k$-space tophat window has the minimum required property in the theoretical PBH estimation. Our procedure makes it possible to calculate the PBH mass spectrum for an arbitrary power spectrum by using a plausible PBH formation criterion with the nonlinear relation taken into account.
The next generation of gravitational-wave experiments, such as Einstein Telescope, Cosmic Explorer and LISA, will test the primordial black hole scenario. We provide a forecast for the minimum testable value of the abundance of primordial black holes as a function of their masses for both the unclustered and clustered spatial distributions at formation. In particular, we show that these instruments may test abundances, relative to the dark matter, as low as $10^{-10}$.
Evidences for the primordial black holes (PBH) presence in the early Universe renew permanently. New limits on their mass spectrum challenge existing models of PBH formation. One of the known model is based on the closed walls collapse after the inflationary epoch. Its intrinsic feature is multiple production of small mass PBH which might contradict observations in the nearest future. We show that the mechanism of walls collapse can be applied to produce substantially different PBH mass spectra if one takes into account the classical motion of scalar fields together with their quantum fluctuations at the inflationary stage.
We calculate the exact formation probability of primordial black holes generated during the collapse at horizon re-entry of large fluctuations produced during inflation, such as those ascribed to a period of ultra-slow-roll. We show that it interpolates between a Gaussian at small values of the average density contrast and a Cauchy probability distribution at large values. The corresponding abundance of primordial black holes may be larger than the Gaussian one by several orders of magnitude. The mass function is also shifted towards larger masses.