Do you want to publish a course? Click here

Learning versus Unlearning: An Experiment on Retractions

71   0   0.0 ( 0 )
 Added by Jonathan Libgober
 Publication date 2021
  fields Economy Financial
and research's language is English




Ask ChatGPT about the research

Widely discredited ideas nevertheless persist. Why do people fail to ``unlearn? We study one explanation: beliefs are resistant to retractions (the revoking of earlier information). Our experimental design identifies unlearning -- i.e., updating from retractions -- and enables its comparison with learning from equivalent new information. Across different kinds of retractions -- for instance, those consistent or contradictory with the prior, or those occurring when prior beliefs are either extreme or moderate -- subjects do not fully unlearn from retractions and update less from them than from equivalent new information. This phenomenon is not explained by most of the well-studied violations of Bayesian updating, which yield differing predictions in our design. However, it is consistent with difficulties in conditional reasoning, which have been documented in other domains and circumstances.



rate research

Read More

95 - Jing Shi , Marcel Ausloos , 2020
This paper investigates the heterogeneous impacts of either Global or Local Investor Sentiments on stock returns. We study 10 industry sectors through the lens of 6 (so called) emerging countries: China, Brazil, India, Mexico, Indonesia and Turkey, over the 2000 to 2014 period. Using a panel data framework, our study sheds light on a significant effect of Local Investor Sentiments on expected returns for basic materials, consumer goods, industrial, and financial industries. Moreover, our results suggest that from Global Investor Sentiments alone, one cannot predict expected stock returns in these markets.
149 - Tianyong Zhou 2021
The existing theorization of development economics and transition economics is probably inadequate and perhaps even flawed to accurately explain and analyze a dual economic system such as that in China. China is a country in the transition of dual structure and system. The reform of its economic system has brought off a long period of transformation. The allocation of factors is subjected to the dualistic regulation of planning or administration and market due to the dualistic system, and thus the signal distortion will be a commonly seen existence. From the perspective of balanced and safe growth, the institutional distortions of population birth, population flow, land transaction and housing supply, with the changing of export, may cause great influences on the production demand, which includes the iterative contraction of consumption, the increase of export competitive cost, the widening of urban-rural income gap, the transferring of residents income and the crowding out of consumption. In view of the worldwide shift from a conservative model with more income than expenditure to the debt-based model with more expenditure than income and the need for loose monetary policy, we must explore a basic model that includes variables of debt and land assets that affecting money supply and price changes, especially in China, where the current debt ratio is high and is likely to rise continuously. Based on such a logical framework of dualistic system economics and its analysis method, a preliminary calculation system is formed through the establishment of models.
This paper proposes a public-private insurance scheme for earthquakes and floods in Italy in which property-owners, the insurer and the government co-operate in risk financing. Our model departs from the existing literature by describing a public-private insurance intended to relieve the financial burden that natural events place on governments, while at the same time assisting individuals and protecting the insurance business. Hence, the business is aiming at maximizing social welfare rather than profits. Given the limited amount of data available on natural risks, expected losses per individual have been estimated through risk-modeling. In order to evaluate the insurers loss profile, spatial correlation among insured assets has been evaluated by means of the Hoeffding bound for r-dependent random variables. Though earthquakes generate expected losses that are almost six times greater than floods, we found that the amount of public funds needed to manage the two perils is almost the same. We argue that this result is determined by a combination of the risk aversion of individuals and the shape of the loss distribution. Lastly, since earthquakes and floods are uncorrelated, we tested whether jointly managing the two perils can counteract the negative impact of spatial correlation. Some benefit from risk diversification emerged, though the probability of the government having to inject further capital might be considerable. Our findings suggest that, when not supported by the government, private insurance might either financially over-expose the insurer or set premiums so high that individuals would fail to purchase policies.
Since the 1980s, technology business incubators (TBIs), which focus on accelerating businesses through resource sharing, knowledge agglomeration, and technology innovation, have become a booming industry. As such, research on TBIs has gained international attention, most notably in the United States, Europe, Japan, and China. The present study proposes an entrepreneurial ecosystem framework with four key components, i.e., people, technology, capital, and infrastructure, to investigate which factors have an impact on the performance of TBIs. We also empirically examine this framework based on unique, three-year panel survey data from 857 national TBIs across China. We implemented factor analysis and panel regression models on dozens of variables from 857 national TBIs between 2015 and 2017 in all major cities in China and found that a number of factors associated with people, technology, capital, and infrastructure components have various statistically significant impacts on the performance of TBIs at either national model or regional models.
Conventional energy production based on fossil fuels causes emissions which contribute to global warming. Accurate energy system models are required for a cost-optimal transition to a zero-emission energy system, an endeavor that requires an accurate modeling of cost reductions due to technological learning effects. In this review, we summarize common methodologies for modeling technological learning and associated cost reductions. The focus is on learning effects in hydrogen production technologies due to their importance in a low-carbon energy system, as well as the application of endogenous learning in energy system models. Finally, we present an overview of the learning rates of relevant low-carbon technologies required to model future energy systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا