Do you want to publish a course? Click here

ZFIRE: The Beginning of the End for Massive Galaxies at z ~ 2 and Why Environment Matters

278   0   0.0 ( 0 )
 Added by Anishya Harshan
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use ZFIRE and ZFOURGE observations with the Spectral Energy Distribution (SED) fitting tool Prospector to reconstruct the star formation histories (SFHs) of proto-cluster and field galaxies at $zsim 2 $ and compare our results to the TNG100 run of the IllustrisTNG cosmological simulation suite. In the observations, we find that massive proto-cluster galaxies ($log[{rm M}_{ast}/{rm M}_{odot}]>$10.5) form $45 pm 8 %$ of their total stellar mass in the first $2$ Gyr of the Universe compared to $31 pm 2 %$ formed in the field galaxies. In both observations and simulations, massive proto-cluster galaxies have a flat/declining SFH with decreasing redshift compared to rising SFH in their field counterparts. Using IllustrisTNG, we find that massive galaxies ($log[{rm M}_{ast}/{rm M}_{odot}] geq 10.5$) in both environments are on average $approx190$ Myr older than low mass galaxies ($log[{rm M}_{ast}/{rm M}_{odot}]= 9-9.5$). However, the difference in mean stellar ages of cluster and field galaxies is minimal when considering the full range in stellar mass ($log[{rm M}_{ast}/{rm M}_{odot}] geq 9$). We explore the role of mergers in driving the SFH in IllustrisTNG and find that massive cluster galaxies consistently experience mergers with low gas fraction compared to other galaxies after 1 Gyr from the Big Bang. We hypothesize that the low gas fraction in the progenitors of massive cluster galaxies is responsible for the reduced star formation.



rate research

Read More

We perform a kinematic analysis of galaxies at $zsim2$ in the COSMOS legacy field using near-infrared (NIR) spectroscopy from Keck/MOSFIRE as part of the ZFIRE survey. Our sample consists of 75 Ks-band selected star-forming galaxies from the ZFOURGE survey with stellar masses ranging from log(M$_{star}$/M$_{odot}$)$=9.0-11.0$, 28 of which are members of a known overdensity at $z=2.095$. We measure H$alpha$ emission-line integrated velocity dispersions ($sigma_{rm int}$) from 50$-$230 km s$^{-1}$, consistent with other emission-line studies of $zsim2$ field galaxies. From these data we estimate virial, stellar, and gas masses and derive correlations between these properties for cluster and field galaxies at $zsim2$. We find evidence that baryons dominate within the central effective radius. However, we find no statistically significant differences between the cluster and the field, and conclude that the kinematics of star-forming galaxies at $zsim2$ are not significantly different between the cluster and field environments.
We present a comparison of the spatial distributions of Ly$alpha$ emitters (LAEs) and massive star-forming and quiescent galaxies (SFGs and QGs) at $2<z<4.5$. We use the photometric redshift catalog to select SFGs and QGs and a LAE catalog from intermediate/narrow bands obtained from the Subaru Telescope and Isaac-Newton Telescope in Cosmic Evolution Survey (COSMOS). We derive the auto-/cross- correlation signals of SFGs, QGs, and LAEs, and the galaxy overdensity distributions at the position of them. Whereas the cross-correlation signals of SFGs and QGs are explained solely by their halo mass differences, those of SFGs and LAEs are significantly lower than those expected from their auto-correlation signals, suggesting that some additional physical processes are segregating these two populations. Such segregation of SFGs and LAEs becomes stronger for rest-frame ultraviolet faint LAEs ($M_{rm UV}>-20$). From the overdensity distributions, LAEs are located in less dense regions than SFGs and QGs, whereas SFGs and QGs tend to be in the same overdensity distributions. The different spatial distributions of LAEs compared to those of massive galaxies may be attributed to assembly bias or large amounts of neutral hydrogen gas associated with massive halos. These results reinforce the importance of exploring multiple galaxy populations in quantifying the intrinsic galaxy environment of the high-$z$ universe.
We present an overview and the first data release of ZFIRE, a spectroscopic redshift survey of star-forming galaxies that utilizes the MOSFIRE instrument on Keck-I to study galaxy properties in rich environments at $1.5<z<2.5$. ZFIRE measures accurate spectroscopic redshifts and basic galaxy properties derived from multiple emission lines. The galaxies are selected from a stellar mass limited sample based on deep near infra-red imaging ($mathrm{K_{AB}<25}$) and precise photometric redshifts from the ZFOURGE and UKIDSS surveys as well as grism redshifts from 3DHST. Between 2013--2015 ZFIRE has observed the COSMOS and UDS legacy fields over 13 nights and has obtained 211 galaxy redshifts over $1.57<z<2.66$ from a combination of nebular emission lines (such as Halpha, NII, Hbeta, OII, OIII, SII) observed at 1--2micron. Based on our medium-band NIR photometry, we are able to spectrophotometrically flux calibrate our spectra to around10% accuracy. ZFIRE reaches $5sigma$ emission line flux limits of around$mathrm{3times10^{-18}~erg/s/cm^2}$ with a resolving power of $R=3500$ and reaches masses down to around10$^{9}$msol. We confirm that the primary input survey, ZFOURGE, has produced photometric redshifts for star-forming galaxies (including highly attenuated ones) accurate to $Delta z/(1+zmathrm{_{spec})}=0.015$ with $0.7%$ outliers. We measure a slight redshift bias of $<0.001$, and we note that the redshift bias tends to be larger at higher masses. We also examine the role of redshift on the derivation of rest-frame colours and stellar population parameters from SED fitting techniques. The ZFIRE survey extends spectroscopically-confirmed $zsim 2$ samples across a richer range of environments, here we make available the first public release of the data for use by the community.footnote{url{http://zfire.swinburne.edu.au}}
We perform a kinematic and morphological analysis of 44 star-forming galaxies at $zsim2$ in the COSMOS legacy field using near-infrared spectroscopy from Keck/MOSFIRE and F160W imaging from CANDELS/3D-HST as part of the ZFIRE survey. Our sample consists of cluster and field galaxies from $2.0 < z < 2.5$ with K band multi-object slit spectroscopic measurements of their H$alpha$ emission lines. H$alpha$ rotational velocities and gas velocity dispersions are measured using the Heidelberg Emission Line Algorithm (HELA), which compares directly to simulated 3D data-cubes. Using a suite of simulated emission lines, we determine that HELA reliably recovers input S$_{0.5}$ and angular momentum at small offsets, but $V_{2.2}/sigma_g$ values are offset and highly scattered. We examine the role of regular and irregular morphology in the stellar mass kinematic scaling relations, deriving the kinematic measurement S$_{0.5}$, and finding $log(S_{0.5}) = (0.38pm0.07)log(M/M_{odot}-10) + (2.04pm0.03)$ with no significant offset between morphological populations and similar levels of scatter ($sim0.16$ dex). Additionally, we identify a correlation between M$_{star}$ and $V_{2.2}/sigma_g$ for the total sample, showing an increasing level of rotation dominance with increasing M$_{star}$, and a high level of scatter for both regular and irregular galaxies. We estimate the specific angular momenta ($j_{disk}$) of these galaxies and find a slope of $0.36pm0.12$, shallower than predicted without mass-dependent disk growth, but this result is possibly due to measurement uncertainty at M$_{star}$ $<$ 9.5. However, through a K-S test we find irregular galaxies to have marginally higher $j_{disk}$ values than regular galaxies, and high scatter at low masses in both populations.
We examine the Fundamental Plane (FP) and mass-to-light ratio ($M/L$) scaling relations using the largest sample of massive quiescent galaxies at $1.5<z<2.5$ to date. The FP ($r_{e}, sigma_{e}, I_{e}$) is established using $19$ $UVJ$ quiescent galaxies from COSMOS with $Hubble$ $Space$ $Telescope$ $(HST)$ $H_{F160W}$ rest-frame optical sizes and X-shooter absorption line measured stellar velocity dispersions. For a very massive, ${rm{log}}(M_{ast}/M_{odot})>11.26$, subset of 8 quiescent galaxies at $z>2$, from Stockmann et al. (2020), we show that they cannot passively evolve to the local Coma cluster relation alone and must undergo significant structural evolution to mimic the sizes of local massive galaxies. The evolution of the FP and $M/L$ scaling relations, from $z=2$ to present-day, for this subset are consistent with passive aging of the stellar population and minor merger structural evolution into the most massive galaxies in the Coma cluster and other massive elliptical galaxies from the MASSIVE Survey. Modeling the luminosity evolution from minor merger added stellar populations favors a history of merging with dry quiescent galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا